Functional Analysis and Its Applications

, Volume 32, Issue 3, pp 195–198 | Cite as

Poisson infinite-dimensional analysis as an example of analysis related to generalized translation operators

  • Yu. M. Berezansky
Brief Communications
  • 48 Downloads

Keywords

Jacobi Field Poisson Measure Integral Equation Operator Theory Multiple Configuration White Noise Analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Itô, Probab. Theory Related Fields,77, 1–28 (1988).MATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Y. Itô, and I. Kubo, Nagoya Math. J.,111, 41–84 (1988).MATHMathSciNetGoogle Scholar
  3. 3.
    Yu. G. Kondratiev, J. L. da Silva, L. Streit, and G. F. Us, Infinite Dim. Anal. Quantum Prob. Related Topics,1, No. 1, 91–117 (1998).MATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Yu. M. Berezansky, Funct. Anal. Applications,30, No 4, 61–65 (1996).MathSciNetGoogle Scholar
  5. 5.
    Yu. M. Berezansky, Ukr. Math. J.,49, No. 3, 364–409 (1997).Google Scholar
  6. 6.
    E. W. Lytvynov, Methods Funct. Anal. Topology,1, No. 1, 61–85 (1995).MATHMathSciNetGoogle Scholar
  7. 7.
    Yu. M. Berezansky, Integral Equations Operator Theory,30, No. 2, 163–190 (1998).MATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    S. Albeverio, Yu. G. Kondratiev, and M. Röckner, Analysis and Geometry on Configuration Spaces, Bielefeld, Preprint BiBoS, 1997.Google Scholar
  9. 9.
    Yu. M. Berezansky, Selfadjoint Operators in Spaces of Functions of Infinitely Many Variables, Amer. Math. Soc., Providence, RI, 1986.Google Scholar

Copyright information

© Plenum Publishing Corporation 1999

Authors and Affiliations

  • Yu. M. Berezansky

There are no affiliations available

Personalised recommendations