Skip to main content
Log in

Approximate invariance and differential inclusions in Hilbert spaces

  • Published:
Journal of Dynamical and Control Systems Aims and scope Submit manuscript

Abstract

Consider a mappingF from a Hilbert spaceH to the subsets ofH, which is upper semicontinuous/Lipschitz, has nonconvex, noncompact values, and satisfies a linear growth condition. We give the first necessary and sufficient conditions in this general setting for a subsetS ofH to be approximately weakly/strongly invariant with respect to approximate solutions of the differential inclusion\(\dot x(t) \in F(x)\). The conditions are given in terms of the lower/upper Hamiltonians corresponding toF and involve nonsmooth analysis elements and techniques. The concept of approximate invariance generalizes the well-known concept of invariance and in turn relies on the notion of an ∈-trajectory corresponding to a differential inclusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.-P. Aubin, Viability theory.Birkhäuser, Boston, 1991.

    MATH  Google Scholar 

  2. J.-P. Aubin and A. Cellina, Differential Inclusions.Springer-Verlag, New York, 1984.

    MATH  Google Scholar 

  3. J.-M. Bony, Principe du maximum, inégalite de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés.Ann. Inst. Fourier Grenoble 19 (1969), 277–304.

    MATH  MathSciNet  Google Scholar 

  4. J. M. Borwein and D. Preiss, A smooth variational principle with applications to subdifferentiability and to differentiability of convex functions.Trans. Am. Math. Soc. 303 (1987), 517–527.

    Article  MATH  MathSciNet  Google Scholar 

  5. J. M. Borwein and H. M. Strojwas, Proximal analysis and boundaries of closed sets in Banach space. Part I: Theory.Can. J. Math. 38 (1986), 431–452.

    MATH  MathSciNet  Google Scholar 

  6. O. Cârja and I. I. Vrabie, Some new viability results for semilinear differential inclusions.Preprint, 1996.

  7. F. H. Clarke, Generalized gradients and applications.Trans. Am. Math. Soc. 205 (1975), 247–262.

    Article  MATH  Google Scholar 

  8. —, Methods of dynamic and nonsmooth optimization. In: CBMSNSF Regional Conference series in Applied Mathematics, Vol. 57.SIAM, Philadelphia, 1989.

    Google Scholar 

  9. —, Optimization and nonsmooth analysis. In: Classics in Applied Mathematics, Vol. 5.SIAM, Philadelphia, 1990. (Originally published byWiley Interscience, New York, 1983).

    Google Scholar 

  10. F. H. Clarke and J.-P. Aubin, Monotone invariant solutions to differential inclusions.J. London Math. Soc. 16 (1977), 357–366.

    MATH  MathSciNet  Google Scholar 

  11. F. H. Clarke, Yu. S. Ledyaev, R. J. Stern, and P. R. Wolenski, Introduction to nonsmooth analysis. (textbook in preparation).

  12. —, Qualitative properties of trajectories of control systems: A survey.J. Dynam. and Control Syst. 1 (1995), 1–48.

    Article  MathSciNet  Google Scholar 

  13. F. H. Clarke, Yu. S. Ledyaev, and P. R. Wolenski. Proximal analysis and minimization principles.J. Math. Anal. Appl. 196 (1995), 722–735.

    Article  MATH  MathSciNet  Google Scholar 

  14. M. G. Crandall, A generalization of Peano’s existence theorem and flow invariance.Proc. Am. Math. Soc. 36 (1972), 151–155.

    Article  MATH  MathSciNet  Google Scholar 

  15. M. G. Crandall and P.-L. Lions, Viscosity solutions of Hamilton-Jacobi equations.Trans. Am. Math. Soc. 277 (1983), 1–42.

    Article  MATH  MathSciNet  Google Scholar 

  16. K. Deimling, Ordinary differential equations in Banach spaces.Lect. Notes Math. 596 (1977).

  17. —, Multivalued differential equations.de Gruyter, Berlin, 1992.

    MATH  Google Scholar 

  18. J. Diestel and J. J. Uhl, Vector measures.Am. Math. Soc., Providence, 1977.

    MATH  Google Scholar 

  19. H. Frankowska, Lower semicontinuous solutions of the Hamilton-Jacobi equation.SIAM J. Control Optimiz. 31 (1993), 257–272.

    Article  MATH  MathSciNet  Google Scholar 

  20. Kh. Guseinov, A. I. Subbotin, and V. N. Ushakov, Derivatives for multivalued mappings with applications to game-theoretical problems of control.Probl. Control Inf. Theory 14 (1985), 155–167.

    MATH  MathSciNet  Google Scholar 

  21. Kh. Guseinov and V. N. Ushakov, Strongly and weakly invariant sets with respect to differential inclusions. (Russian)Differ. Uravneniya 26 (1990), 1888–1894.

    MATH  MathSciNet  Google Scholar 

  22. N. N. Krasovskii and A. I. Subbotin, Positional differential games. (Russian)Nauka, Moscow, 1974. (Revised English translation: Gametheoretical control problems,Springer-Verlag, New York, 1988).

    MATH  Google Scholar 

  23. M. Krastanov, Ordinary forward invariant sets, homogeneity and small-time local controllability. In: Banach Center Publications, Vol. 32.Polish Academic of Science, 1995.

  24. P. D. Loewen, Optimal control via nonsmooth analysis. Vol. 2.CRM Proc. and Lect. Notes, Providence, Am. Math. Soc., 1993.

  25. N. H. Pavel, Differential equations, flow invariance and applications. Vol. 113.Research Notes in Math., Pitman, 1984.

  26. R. H. Jr. Martin, Nonlinear operators and differential equations in Banach spaces.Wiley, New York, 1976.

    MATH  Google Scholar 

  27. M. L. Radulescu and F. H. Clarke, Geometric approximation of proximal normals. (submitted).

  28. R. Redheffer and W. Walter, A differential inequality for the distance function in normed linear spaces.Math. Ann. 211 (1974), 299–314.

    Article  MATH  MathSciNet  Google Scholar 

  29. Shuzhong Shi, Viability theorems of a class of differential-operator inclusions.J. Differ. Eqs. 79 (1989), 232–257.

    Article  MATH  Google Scholar 

  30. A. I. Subbotin, A generalization of the basic equation of the theory of differential games.Sov. Math. Dokl. 22 (1980), 358–362.

    MATH  Google Scholar 

  31. —, Generalized solutions of first-order PDEs: The dynamical optimization perspective.Birkhäuser, Boston, 1995.

    Google Scholar 

  32. V. M. Veliov, Sumcient conditions for viability under imperfect measurement.Set-Valued Anal. 1 (1993), 305–317.

    Article  MATH  MathSciNet  Google Scholar 

  33. J. A. Yorke, A continuous differential equation in Hilbert space without existence.Funkc. Ekvac. 13 (1970), 19–21.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Professor R. V. Gamkrelidze

The first and the third authors are supported in part by the Natural Sciences and Engineering Research Council of Canada and Le Fonds FCAR du Québec.

The second author is visiting Rutgers University. Supported in part by the Russian Foundation for Fundamental Research, Grant 96-01-00219, by the Natural Sciences and Engineering Research Council of Canada, Le Fonds FCAR du Québec, and by the Rutgers Center for Systems and Control (SYCON).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clarke, F.H., Ledyaev, Y.S. & Radulescu, M.L. Approximate invariance and differential inclusions in Hilbert spaces. Journal of Dynamical and Control Systems 3, 493–518 (1997). https://doi.org/10.1007/BF02463280

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02463280

1991 Mathematics Subject Classification

Key words and phrases

Navigation