Skip to main content
Log in

The interaction of diffusion and perfusion in homogeneous tissue

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

A mathematical model is proposed to examine the interaction between blood perfusion and gas diffusion in the uptake of inert gases in tissue. The standard Haldane perfusion model is contrasted with the Hills radial bulk diffusion model in a variety of homogeneous tissue types used in decompression theory. It is the intention of the present analysis to fix ideas on the role of diffusion, perfusion and axial concentration and quantitative studies are given and seem to show that Haldane's perfusion theory is at best a poor approximation even at asymptotic times. It is shown that a strong interaction exists between diffusion and perfusion in muscle tissue and neither approach adequately describes the actual uptake half-time of an inert gas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Abramovitz, M. and I. A. Stegun (eds.). 1965.Handbook of Mathematical Functions. New York: Dover.

    Google Scholar 

  • Bassingthwaite, J. B., T. J. Knopp and J. B. Hazelrig. 1970. “A Concurrent Flow Model for Capillary Tissue Exchange.” InCapillary Permeability, Crone, N. and N. A. Lassen, eds. New York: Academic Press.

    Google Scholar 

  • Bell, G. H., J. N. Davidson and H. Scarborough. 1961.Textbook of Physiology and Biochemistry. London: Livingstone.

    Google Scholar 

  • Bellman, R., J. A. Jacquez and R. Kalaba. 1960. “Some Mathematical Aspects of Chemotherapy: I. One-Organ Models.”Bull. Math. Biophysics,22, 181–198.

    MathSciNet  Google Scholar 

  • —, R. Kalaba and J.-A. Lockett. 1966.Numerical Inversion of the Laplace Transform. New York: American Elsevier.

    MATH  Google Scholar 

  • Blum, J. J. 1960. “Concentration Profiles in and Around Capillaries.”Am. J. Physiol.,198, 991–998.

    Google Scholar 

  • Boycott, A. E., G. C. C. Damant and J. S. Haldane. 1908. “The Prevention of Compressed Air Illness.”J. Hygiene,8, 342–443.

    Article  Google Scholar 

  • Carslaw, H. S. and J. C. Jaeger. 1959.Conduction of Heat in Solids London: Oxford University Press.

    Google Scholar 

  • Gonzalez-Fernandez, J. M. and S. E. Atta. 1968. “Transport and Consumption of Oxygen in Capillary-Tissue Structures.”Math. Bioscience,2, 225–262.

    Article  Google Scholar 

  • — and — 1972. “Concentration of Oxygen around Capillaries in Polygonal Regions of Supply.”,13, 55–69.

    Article  MATH  Google Scholar 

  • Haldane, J. S. See under Boycott, Damant and Haldane (1908).

  • Hansson-Mild, K. 1972. “Diffusion Exchange between a Membrane-Bounded Sphere and its Surrounding.”Bull. Math. Biophysics,34, 93–102.

    Google Scholar 

  • Harris, E. J. and G. P. Burn. 1949. “The Transfer of Sodium and Potassium Ions between Muscle and the Surrounding Medium.”Trans. Faraday Soc.,45, 508–528.

    Article  Google Scholar 

  • Hennessy, T. R. 1971a. “Inert Gas Diffusion in Heterogeneous Tissue: I. Without Perfusion.”Bull. Math. Biophysics,33, 235–248.

    Google Scholar 

  • —. 1971b. “Inert Gas Diffusion in Heterogeneous Tissue: II. With Perfusion.”,33, 249–257.

    Google Scholar 

  • Hennessy, T. R. 1973. Ph.D. Thesis, University of Cape Town.

  • Hills, B. A. 1966.A Thermodynamic and Kinetic Approach to Decompression Sickness. Adelaide: Libraries Board of South Australia.

    Google Scholar 

  • —. 1967. “Diffusion Versus Blood Perfusion in Limiting the Rate of Uptake of Inert Non-Polar Gases by Skeletal Rabbit Muscle.”Clinical Sci.,33, 67–87.

    Google Scholar 

  • —. 1969. “The Time Course for the Uptake of Inert Gases by the Tissue Type responsible for Marginal Symptoms of Decompression Sickness.”Rev. Subaquat. Physiol.,1, 255–261.

    Google Scholar 

  • —. 1970a. “An Assessment of the ExpressionC=Q[l-exp(-PS)/Q] for Estimating Capillary Permeabilities.”Phys. Med. Biol.,15, 705–713.

    Article  Google Scholar 

  • —. 1970b. “Vital Issues in Computing Decompression Schedules from Fundamentals: II. Diffusion Versus Blood Perfusion in Controlling Blood-Tissue Exchange.”Int. J. Biometeor.,14, 323–342.

    Article  Google Scholar 

  • Johnson, J. A. and T. A. Wilson. 1966. “A Model for Capillary Exchange.”Am. J. Physiol.,210, 1299–1303.

    Google Scholar 

  • Kety, S. S. 1951. “The Theory and Applications of the Exchange of Inert Gas at the Lungs and Tissues.”Pharm. Rev. 3, 1–41.

    Google Scholar 

  • Krogh, A. 1919a. “The Number and Distribution of Capillaries in Muscles with Calculations of the Oxygen Pressure Head Necessary for Supplying Tissue.”J. Physiol.,52, 409–415.

    Google Scholar 

  • —. 1919b. “The Supply of Oxygen to the Tissues and the Regulation of the Capillary Circulation.”,52, 457–474.

    Google Scholar 

  • —. 1936.The Anatomy and Physiology of Capillaries. New Haven: Yale University Press.

    Google Scholar 

  • Levitt, D. G. 1971. “Theoretical Model of Capillary Exchange Incorporating Interactions between Capillaries.”Am. J. Physiol. 220, 250–255.

    Google Scholar 

  • Luke, Y. 1969.The Special Functions and Their Approximations. Vols. I and II. New York: Academic Press.

    MATH  Google Scholar 

  • Morales, M. F. and R. E. Smith 1944. “On the Theory of Blood-Tissue Exchanges: III. Circulation and Inert-Gas Exchanges at the Lung with Special Reference to Saturation.”Bull. Math. Biophysics,6, 141–152.

    Google Scholar 

  • — and —. 1945a. “A Note on the Physiological Arrangement of Tissues.”7, 47–51.

    Google Scholar 

  • — and —. 1945b. “The Physiological Factors which Govern Inert Gas Exchange.”,7, 99–106.

    Google Scholar 

  • — and —. 1948. “On the Theory of Blood-Tissue Exchange of Inert gases: VI. Validity of Approximate Uptake Expressions.”,10, 191–200.

    Google Scholar 

  • Norden, H. 1961. “Numerical Inversion of the Laplace Transform.”Acta Acad. Aboensis Math. et Phys.,22, (8), 1–31.

    MathSciNet  Google Scholar 

  • Perl, W. 1962. “Heat and Matter Distribution in Body Tissues and the Determination of Tissue Blood Flow by Local Clearance Methods.”J. Theor. Biology,2, 201–235.

    Article  Google Scholar 

  • —. 1963. “An Extension of the Diffusion Equation to Include Clearance by Capillary Blood Flow.”Ann. N.Y. Acad. Sci.,108, 92–105.

    Google Scholar 

  • Perl, W., H. Rackow, E. Salanitre, G. L. Wolf and R. M. Epstein. 1965. “Inter-tissue Diffusion Effect for Inert Fat-soluble Gases.”J. Appl. Physiol.,20, 621–627.

    Google Scholar 

  • Piessens, R. 1972. “A New Method for the Inversion of the Laplace Transform.”J. Inst. Maths. Applics.,10, 185–192.

    MATH  Google Scholar 

  • Reneau, D. D., D. F. Bruley and M. H. Knisely. 1969. “A Digital Simulation of Transient Oxygen Transport in Capillary Tissue Systems.”A.I.Ch.E. Journal,15, 916–925.

    Google Scholar 

  • Roughton, F. J. W. 1952. “Diffusion and Chemical Reaction Velocity in Cylindrical and Spherical Systems of Physiological Interest.”Proc. Roy. Soc. B,140, 203–221.

    Article  Google Scholar 

  • Sangren, W. C. and C. W. Sheppard. 1953. “A Mathematical Derivation of the Exchange of a Labelled Substance between a Liquid Flowing in a Vessel and an External Compartment.”Bull. Math. Biophysics,15, 387–394.

    Google Scholar 

  • Schmidt, G. W. 1952. “A Mathematical Theory of Capillary Exchange as a Function of Tissue Structure.”14, 229–263.

    Google Scholar 

  • — 1953. “The Time Course of Capillary Exchange.”,15, 477–488.

    Google Scholar 

  • Smith, R. E. and M. F. Morales. 1944a. “On the Theory of Blood Tissue Exchanges: I. Fundamental Equations.”,6, 125–132.

    Google Scholar 

  • — and —. 1944b. “On the Theory of Blood Tissue Exchanges: II. Applications.”,6, 133–139.

    Google Scholar 

  • Taylor, G. I. 1953. “Dispersion of Soluble Matter in Solvent Flowing slowly through a Tube.”Proc. Roy. Soc. A 219, 186–203.

    Google Scholar 

  • Teorell, T. 1937. “Kinetics of Distribution of Substances Administered to the Body: I. The Extra-Vascular Modes of Administration.”Arch. internat. Pharmacodyn. et Thérap.,57, 205–224.

    Google Scholar 

  • Thews, G. 1953. “Über Die Mathematische Behandling Physiologischer Diffusion Prozesse in Zylinderförmigen Objekten.”Acta Biotheoretica,10, 105–137.

    Article  MathSciNet  Google Scholar 

  • von Schrotter, H. 1906. “Der Sauerstoff in der Prophylaxe und Therapie der Luft druckerkrankungen.” InHandbuch der Sauerstofftherapie, Michaelis M., ed., Berlin: Hirschwald. Cited by Kety (1951).

    Google Scholar 

  • Zuntz, N. 1897. “Zur Pathogenese und Therapie der durch rasche Luftdruckanderungen erzeugten Krankheiten.”Fortschr. d. Med.,15, 632–639. Cited by Kety (1951).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hennessy, T.R. The interaction of diffusion and perfusion in homogeneous tissue. Bltn Mathcal Biology 36, 505–526 (1974). https://doi.org/10.1007/BF02463263

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02463263

Keywords

Navigation