Skip to main content
Log in

The Weierstrass representation of closed surfaces in ℝ3

Functional Analysis and Its Applications Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Institutional subscriptions

References

  1. A. Bobenko, “Surfaces in terms of 2 by 2 matrices. Old and new integrable cases,” In: Harmonic Maps and Integrable Systems, Aspects Math. E23, Vieweg, 1994, pp. 83–127.

  2. B. A. Dubrovin, “Matrix finite-gap operators,” J. Sov. Math.,28, 20–50 (1985).

    Article  MATH  Google Scholar 

  3. L. P. Eisenhart, A Treatise on the Differential Geometry of Curves and Surfaces, Dover, New York, 1909.

    MATH  Google Scholar 

  4. J. Fay, “Theta functions on Riemann surfaces,” Lect. Notes in Math., Vol. 352, Springer-Verlag, 1973.

  5. P. Grinevich and M. U. Schmidt, “Conformal invariant functionals on tori in ℝ3,” To appear in J. Geom. Phys.

  6. N. Hitchin, “Harmonic maps from a 2-torus into the 3-sphere,” J. Differential Geom.,31, 627–710 (1990).

    MATH  MathSciNet  Google Scholar 

  7. G. Kamberov, F. Pedit, and U. Pinkall, “Bonnet pairs and isothermic surfaces,” To appear in Duke Math. J.

  8. M. V. Keldysh, “On the eigenvalues and eigenfunctions of certain classes of non-self-adjoint operators,” Dokl. Akad. Nauk SSSR,77, 11–14 (1951).

    MATH  Google Scholar 

  9. B. G. Konopelchenko, “Induced surfaces and their integrable dynamics,” Stud. Appl. Math.,96, 9–52 (1996).

    MATH  MathSciNet  Google Scholar 

  10. I. M. Krichever, “Methods of algebraic geometry in the theory of nonlinear equations,” Usp. Mat. Nauk,32, No. 6, 183–206 (1977).

    MATH  Google Scholar 

  11. I. M. Krichever, “Spectral theory of two-dimensional periodic operators and its applications,” Usp. Mat. Nauk,44, No. 2, 121–184 (1989).

    MATH  MathSciNet  Google Scholar 

  12. P. A. Kuchment, “Floquet theory for partial differential equations,” Usp. Mat. Nauk,37, No. 4, 3–52 (1982).

    MATH  MathSciNet  Google Scholar 

  13. J. Milnor, Morse Theory, Ann. of Math. Studies, Princeton Univ. Press, Princeton, 1963.

    Google Scholar 

  14. U. Pinkall and I. Sterling, “On the classification of constant mean curvature tori,” Ann. Math.,130, 407–451 (1989).

    Article  MATH  MathSciNet  Google Scholar 

  15. E. Previato, “Hyperelliptic quasi-periodic and soliton solutions of the nonlinear Schrödinger equation,” Duke Math. J.,52, 329–377 (1985).

    Article  MATH  MathSciNet  Google Scholar 

  16. I. A. Taimanov, “Modified Novikov-Veselov equation and differential geometry of surfaces,” In: Amer. Math. Soc. Transl. Ser. 2, Vol. 179, 1997, pp. 133–151.

  17. I. A. Taimanov, “Surfaces of revolution in terms of solitons,” Ann. Global Anal. Geom.,15, 419–435 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  18. I. A. Taimanov, “Global Weierstrass representation and its spectrum,” Usp. Mat. Nauk,52, No. 6, 187–188 (1997).

    MATH  MathSciNet  Google Scholar 

  19. A. P. Veselov and S. P. Novikov, “Finite-gap, two-dimensional Schrödinger operators. Potential operators,” Dokl. Akad. Nauk SSSR,279, 784–788 (1984).

    MATH  MathSciNet  Google Scholar 

  20. A. P. Veselov and S. P. Novikov, “Finite-gap, two-dimensional Schrödinger operators. Explicit formulas and evolution equations,” Dokl. Akad. Nauk SSSR,279, 20–24 (1984).

    MATH  MathSciNet  Google Scholar 

Download references

Authors

Additional information

This work was supported by the Russian Foundation for Basic Research (grant 96-15-96877) and by SFB 288.

Institute of Mathematics, Novosibirsk. Translated from Funktsional’nyi Analiz i Ego Prilozheniya, Vol. 32, No. 4, pp. 49–62, October–December, 1998.

Translated by I. A. Taimanov

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taimanov, I.A. The Weierstrass representation of closed surfaces in ℝ3 . Funct Anal Its Appl 32, 258–267 (1998). https://doi.org/10.1007/BF02463208

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02463208

Keywords

Navigation