Skip to main content
Log in

Mechanisms of the interaction of the angular and linear components of the horizontal vestibulo-ocular reflex in the pigeon

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Abstract

Intact pigeons (Columba livia,n=30) were rotated in a horizontal plane in the dark at different orientations relative to the axis of rotation. A total of 24 birds showed different directions of changes in the duration of contrarotatory nystamus (on transition from central rotation to eccentric), along with displacement of the otolith membranes in both the frontal and sagittal planes. These pigeons showed a direct relationship between changes in the duration of the primary phase of nystagmus and the peak rate of the slow component on the background of increasing centrifugal force, while no such relationship was seen in conditions of decreasing centrifugal force. Increases in the duration of the primary phase were accompanied by decreases in the duration of the secondary phase (i.e., the reversive phase) and vice versa. These data provide evidence that the otolith component is not decreased to zero by rotation at constant angular rates or immediately after this stopped; in conditions of negative angular acceleration, this component was biphasic. The results are in good agreement with a hypothesis [2] suggesting that the otolith component represents asymmetric (different in paired brain structures) neuronal activity modifying the canal component even when the level of asymmetry is itself insufficient to initiate eye movements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. M. Levashov,Nystagmometry in Assessment of the State of Vestibular Function [in Russian], Nauka, Leningrad (1984).

    Google Scholar 

  2. Yu. K. Stolbkov, “Channel-otolith interactions in conditions of otolith asymmetry,”Fiziol. Zh. SSSR,75, No. 10, 1381–1388 (1989).

    PubMed  Google Scholar 

  3. Yu. K. Stolbkov, “Interlabyrinthine otolith symmetry and asymmetry as factors in channel-otolith interactions,”Fiziol. Zh. SSSR,76, No. 2, 152–159 (1990).

    PubMed  Google Scholar 

  4. Yu. K. Stolbkov, “Vestibular nystagmus as a result of the interaction of the channel and otolith subsystems of the vestibular system,”Kosmich. Biol. Aviakosmich. Med.,25, No. 3, 28–31 (1991).

    Google Scholar 

  5. Yu. K. Stolbkov and E. P. Maslova, “Nystagmus in humans in conditions of asymmetrical changes in otolith afferentation,”Kosmich. Biol. Aviakosmich. Med.,24, No. 3, 53–56 (1990).

    Google Scholar 

  6. Yu. K. Stolbkov, I. V. Orlov, and V. S. Sabanov, “A statistical tendency can change the asymmetry of nystagmus,”Sensor. Sistemy,9, No. 4, 36–41 (1995).

    Google Scholar 

  7. D. Anastapoulos, C. Gianna, A. M. Bronstein, and M. A. Gresty, “Otolith-ocular and angular horizontal vestibulo-ocular reflex in darkness,”Ann. N.Y. Acad. Sci.,781, 580–582 (1996).

    Google Scholar 

  8. D. T. Angelaki and J. H. Anderson, “The horizontal vestibulo-ocular reflex during linear acceleration in the frontal plane of the cat,”Exp. Brain Res.,86, 40–46 (1991).

    PubMed  CAS  Google Scholar 

  9. A. H. Clarke, W. Tiewes, and H. Scherer, “Evaluation of the torsional VOR in weightlessness,”J. Vestibular Res.,3, 207–218 (1993).

    CAS  Google Scholar 

  10. B. Grane, E. Viirre, and J. Demer, “The human vestibulo-ocular reflex during combined linear and angular acceleration,”Exp. Brain Res.,114, 304–320 (1997).

    Article  Google Scholar 

  11. J. Demer, J. Goldberg, H. Jenkins, and F. Porter, “Vestibulo-ocular reflex during magnified vision: adaptation to reduce visual-vestibular conflict,”Aviat. Space Environ. Med.,58, Supplement, A175–179 (1987).

    PubMed  CAS  Google Scholar 

  12. P. Errico, A. Ferraresi, N. Barmack, and V. Pettorossi, “Role of cerebellar uvula-nodulus in the control of head orientation-specific eye velocity in the rabbit,”Ann. N.Y. Acad. Sci.,781, 614–618 (1996).

    PubMed  CAS  Google Scholar 

  13. C. Fernández and J. M. Goldberg, “Physiology of peripheral neurons innervating otolith organs of the squirrel monkey. 1. Response to static tilts and to long-duration centrifugal force,”J. Neurophysiol. 39, 970–984 (1976).

    PubMed  Google Scholar 

  14. E. Fluur, “The interaction between the utricle and saccule,”Acta Otolaryngol. (Stockholm),69, 17–24 (1970).

    CAS  Google Scholar 

  15. J. M. Goldberg and C. Fernández, “Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. 1. Resting discharge and response to constant angular accelerations,”J. Neurophysiol.,34, 635–660 (1971).

    PubMed  CAS  Google Scholar 

  16. M. Gresty, A. Bronstein, and H. Barrat, “Eye movement responses to combined linear and angular head movement,”Exp. Brain Res.,65, 377–384 (1987).

    Article  PubMed  CAS  Google Scholar 

  17. I. Koizuka, N. Takeda, S. Sato, T. Kuba, and T. Matsunaga, “Nystagmus responses in normal subjects during eccentric sinusoidal rotation,”Acta Otolaryngol. (Stockholm), Supplement,501, 34–37 (1993).

    CAS  Google Scholar 

  18. T. Lempert, C. Gianna, G. Brookes, A. Bronstein, and M. Gresty, “The mid-lateral region of the utricle generates the human transaural linear vestibulo-ocular reflex,”Ann. N.Y. Acad. Sci.,781, 647–649 (1996).

    PubMed  CAS  Google Scholar 

  19. D. Merfeld, L. Young, G. Paige, and D. Tomko, “Spatial orientation of VOR to combined vestibular stimuli in squirrel monkeys,”Acta Otolaryngol. (Stockholm), Supplement,481, 287–292 (1991).

    CAS  Google Scholar 

  20. M. Merfeld and L. Young, “The vestibulo-ocular reflex of the squirrel monkey during eccentric rotation and roll tilt,”Exp. Brain Res.,106, 111–122 (1995).

    PubMed  CAS  Google Scholar 

  21. M. Merfeld, “Modeling of the vestibulo-ocular reflex of the squirrel monkey during eccentric rotation and roll tilt,”Exp. Brain Res.,106, 123–134 (1995).

    PubMed  CAS  Google Scholar 

  22. G. Paige, “Senescence of human visual-vestibular interactions: smooth, pursuit, optokinetic, and vestibular control of eye movements with aging,”Exp. Brain Res.,98, 365–372 (1994).

    Article  Google Scholar 

  23. T. Raphan, E. Wearne, and B. Cohen, “Modeling the organization of the linear and angular vestibulo-ocular reflexes,”Ann. N.Y. Acad. Sci.,781, 348–363 (1996).

    PubMed  CAS  Google Scholar 

  24. I. Sargent and G. Paige, “The primate vestibulo-ocular reflex during combined linear and angular head motion,”Exp. Brain Res.,87, 75–84 (1991).

    Article  PubMed  CAS  Google Scholar 

  25. J. Suzuki, K. Tokumasu, and K. Goto, “Eye movement from single utricular nerve stimulation in the cat,”Acta Otolaryngol. (Stockholm),68, 350–362 (1969).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 84, No. 11, pp. 1252–1263, November, 1998.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stolbkov, Y.K., Orlov, I.V. Mechanisms of the interaction of the angular and linear components of the horizontal vestibulo-ocular reflex in the pigeon. Neurosci Behav Physiol 30, 169–178 (2000). https://doi.org/10.1007/BF02463155

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02463155

Key Words

Navigation