Bulletin of Mathematical Biology

, Volume 40, Issue 1, pp 123–131 | Cite as

A note on dynamics of population with history-dependent birth rate

  • George G. Ross


A model for the dynamics of a single-species population whose birth rate depends on densities of previous generations is introduced. A difference equation formulation is proposed and the solutions classified for the various parameter values. Data from an experimental population of mice growing in limited space is cited and compared with the model predictions.


Density Dependence Mouse Population Fixed Space Cold Spring Harbor Syrup Generate Function Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Calhoun, J. B. (1973) “Death Squared: the Explosive Growth and Demise of a Mouse Population.”Proc. R. Soc. Med.,66, 80–89.Google Scholar
  2. Frauenthal, J. C. (1975). “A Dynamic Model for Human Population Growth.”Theor. Pop. Biol.,8, 64–73.MATHCrossRefGoogle Scholar
  3. Goldberg, S. (1958).An Introduction to Difference Equations, New York: Wiley.Google Scholar
  4. Hutchinson, G. E. (1948). “Circular Causal Systems in Ecology.”Ann. N.Y. Acad. Sci.,50, 221–246.Google Scholar
  5. Levin, S. A. and R. M. May. (1976). “A Note on Difference-Delay Equations”Theor. Pop Biol.,9, 178–187.MATHMathSciNetCrossRefGoogle Scholar
  6. Lotka, A. J. (1956).Elements of Mathematical Biology, Dover.Google Scholar
  7. May, R. M. (1972). “On Relationships Among Various Types of Population Models.”Am. Natur.,107, 46–57.CrossRefGoogle Scholar
  8. May, R. M., G. R. Conway, M. P. Hassell and T. R. E. Southwood. (1974). “Time Delays, Density Dependence, and Single Species Oscillation.”Animal Ecol.,43, 474–770.Google Scholar
  9. Maynard Smith, J. (1968).Mathematical Ideas in Biology. London: Cambridge Univ. Press.Google Scholar
  10. Pielou, E. C. (1969).An Introduction to Mathematical Ecology. New York: Wiley-Interscience.MATHGoogle Scholar
  11. Pollard, J. H. (1970). “On Simple Approximate Calculations Appropriate to Populations with Random Growth Rates.”Theor. Pop. Biol.,1, 208–218.MATHCrossRefGoogle Scholar
  12. Wangersky, R. J. and W. J. Cunningham. (1957). “Time Lag in Population Models.”Cold Spring Harbor Symp. Quart. Biol.,22, 329–338.Google Scholar

Copyright information

© Society for Mathematical Biology 1978

Authors and Affiliations

  • George G. Ross
    • 1
  1. 1.Department of Computer SciencesThe City CollegeNew YorkUSA

Personalised recommendations