Skip to main content
Log in

On the geometry of space-and time-equivalent catastrophes

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

The geometrical nature of the Elementary catastrophes (Thom, 1969) is reviewed. Histories of the movement of catastrophe manifolds and bifurcation sets are presented for some of the space-equivalent unfoldings described by Wassermann (1975). These unfoldings provide descriptions of the variation with time of the stability of stationary states of associated potential energy functions. Identification of these stationary energy states with stationary states of a system therefore provides a description of its behavior with time. Qualitative descriptions of this type are particularly useful when the complexity of a system prevents a detailed quantitative description. Histories of bifurcation set movements suggest different types of system behavior at different space-like coordinates. This type of theory may be a useful model for the processes leading to differentiation of cells and to emergence of adult forms of a biological organism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Berry, M. V. (1975). “Cusped Rainbows and Incoherence. Effects in the Rippling-Mirror Model for Particle Scattering from Surfaces.”J. Phys. A: Math. Gen.,8, 566–584.

    Article  MathSciNet  Google Scholar 

  • Berry, M. V. and J. F. Nye. (1977). “Fine Structure in Caustic Junctions.”Nature,267, 34–36.

    Article  Google Scholar 

  • Bröcker, Th. (1975).Differentiable Germs and Catastrophes (Tr. by L. Lander).London Math. Soc. Lecture Note Series 17. Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  • Godwin, A. N. (1971) “Three Dimensional Pictures for Thom's Parabolic Umbilic.”Inst. Hautes Etudes Sci. Publ. Math.,40, 117–138.

    MATH  MathSciNet  Google Scholar 

  • Guckenheimer, J. (1973). “Catastrophes and Partial Differential Equations.”Annls Inst. Fourier Univ. Grenoble 23, 31–59.

    MATH  MathSciNet  Google Scholar 

  • Holmes, P. J. and D. A. Rand. (1976). “The Bifurcations of Duffing's Equation: An Application of Catastrophe Theory.”J. Sound Vibration 44, 237–253.

    Article  MATH  Google Scholar 

  • Isnard, C. A. and E. C. Zeeman. (1976) “Some Models from Catastrophe Theory in the Social Science”. InUse of Models in the Social Sciences, Ed. Collins, L., pp.44–100. Tavistock Press, London.

    Google Scholar 

  • Jänich, K. (1974). “Caustics and Catastrophes.”Math. Ann. 209, 161–180.

    Article  MATH  MathSciNet  Google Scholar 

  • Thom, R. (1969). “Topological Models in Biology.”Topology 8, 313–336.

    Article  MATH  MathSciNet  Google Scholar 

  • Thom, R. (1972).Stabilité Structurelle et Morphogénèse. W. a. Benjamin, Reading, Mass.

    MATH  Google Scholar 

  • Thom, R. (1975).Structural Stability and Morphogenesis. W. A. Benjamin, Reading, Mass.

    MATH  Google Scholar 

  • Thompson, J. M. T. and G. W. Hunt. (1975). “Towars a Unified Bifurcation Theory.”J. Appl. Math. Phys. (Z.A.M.P.)26, 581–604.

    Article  MATH  MathSciNet  Google Scholar 

  • Wassermann, G. (1974). “Stability of Unfoldings”Lecture Notes in Mathematics 393, Springer-Verlag, New York.

    MATH  Google Scholar 

  • Wasserman, G. (1975). “Stability of Unfoldings in Space and Time”Acta Math.,135, 57–128.

    Article  MathSciNet  Google Scholar 

  • Woodcock, A. E. R. (1974). “Cellular Differentiation and Catastrophe Theory.”Ann. N.Y. Acad. Sci.,231, 60–76.

    MATH  Google Scholar 

  • Woodcock, A. E. R. (1976). “Catastrophe Theory and Cellular Determination, Transdetermination and Differentiation.” Presented at the Society for Mathematical Biology Meeting, University of Pennsylvania, Philadelphia, August 19–21.

  • Woodcock, A. E. R. and T. Poston. (1974). “A Geometrical Study of the Elementary Catastrophes.”Lecture Notes in Mathematics 373, Springer-Verlag, New York.

    Google Scholar 

  • Zeeman, E. C. (1974). “Primary and Secondary Waves in Developmental Biology.”Lectures on Mathematics in the Life Sciences,7, 69–161.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Woodcock, A.E.R. On the geometry of space-and time-equivalent catastrophes. Bltn Mathcal Biology 40, 1–25 (1978). https://doi.org/10.1007/BF02463127

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02463127

Keywords

Navigation