Skip to main content
Log in

Topological consideration in the theory of replication of DNA

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Summary

An obvious difficulty of the Watson-Crick model of DNA is that the intertwining of the strands would seem to hinder their separation during replication. The nature of the difficulty is here made precise and is called the alignment problem. It is shown that the swivelase theory, found in current textbooks and thought to overcome the difficulty, does not in fact do so. The various conceivable solutions of the alignment problem are considered and rejected, leading to the conclusion that chromosomal DNA is not double-helical. An alternative model of DNA is discussed. In addition a topological classification of DNA denaturation processes is given, and an alternative interpretation of the gel electrophoresis experiments on circular duplex DNA is suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alberts, B., Sternglanz, R.: Recent excitement in the DNA replication problem. Nature269, 655–661 (1977)

    Article  Google Scholar 

  2. Bauer, W., Vinograd, J.: The interaction of closed circular DNA with intercalative dyes. I. The superhelix density of SV40 DNA in the presence and absence of dye. J. Mol. Biol.33, 141–171 (1968)

    Article  Google Scholar 

  3. Cairns, J.: The bacterial chromosome. Scientific American, Jan. 1966

  4. Crick, F. H. C.: Linking numbers and nucleosomes. Proc. Natl. Acad. Sci. USA73, 2639–2643 (1976)

    Article  MathSciNet  Google Scholar 

  5. Depew, R. E., Wang, J. C.: Conformal flucturations of DNA helix. Proc. Natl. Acad. Sci. USA72, 4275–4279 (1975)

    Article  Google Scholar 

  6. Frank-Kamenetskii, M. D., Lukashin, A. V., Vologodski, A. V.: Statistical mechanics and topology of polymer chains. Nature258, 398–402 (1975)

    Article  Google Scholar 

  7. Freifelder, D.: Physical Biochemistry. San Francisco: Freeman, 1976

    Google Scholar 

  8. Fuller, F. B.: The writhing number of a space curve. Proc. Natl. Acad. Sci. USA68, 815–819 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  9. Germond, J. E., Hirt, B., Oudet, P., Gross-Bellard, M., Chambon, P.: Folding of the DNA double helix in chromatin-like structures from Simian Virus 40. Proc. Natl. Acad. Sci. USA72, 1843–1847 (1975)

    Article  Google Scholar 

  10. Hayes, W.: The Genetics of Bacteria and their Viruses. Oxford and Edinburgh: Blackwell, 1968

    Google Scholar 

  11. Keller, W.: Determination of the number of superhelical turns in simian virus 40 DNA by gel electrophoresis. Proc. Natl. Acad. Sci. USA72, 4876–4880 (1975)

    Article  Google Scholar 

  12. Kornberg, A.: DNA Synthesis. San Francisco: Freeman, 1974

    Google Scholar 

  13. Lehninger, A. L.: Biochemistry (2nd edition). New York: Worth, 1975

    Google Scholar 

  14. Liu, L. F., Depew, R. E., Wang, J. C.: Knotted single-stranded DNA rings: A novel topological isomer of circular single-stranded DNA formed by treatment withEscherichia coli ω protein. J. Mol. Biol.106, 439–452 (1976)

    Article  Google Scholar 

  15. Liu, L. F., Wang, J. C.: On the degree of unwinding of the DNA helix by ethidium II. Studies by electron microscopy. Biochim. et Biophys. Acta395, 405–412 (1975)

    Google Scholar 

  16. Parker, D. L., Glaser, D. A.: Effect of growth conditions on DNA-membrane attachment inEscherichia coli. Proc. Natl. Acad. Sci. USA72, 2446–2450 (1975)

    Article  Google Scholar 

  17. Pohl, W. F.: The self-linking number of a closed space curve. Journal of Mathematics and Mechanics17, 975–986 (1968)

    MATH  MathSciNet  Google Scholar 

  18. Pulleyblank, D. E., Shure, M., Tang, D., Vinograd, J., Vosberg, H.-P.: Action of nicking-closing enzyme on supercoiled and nonsupercoiled closed circular DNA: Formation of a Boltzmann distribution of topological isomers. Proc. Natl. Acad. Sci. USA72, 4280–4284 (1975)

    Article  Google Scholar 

  19. Rodley, G. A., Scobie, R. S., Bates, R. H. T., Lewitt, R. M.: A possible conformation for double-stranded polynucleotides. Proc. Natl. Acad. Sci. USA73, 2959–2963 (1976)

    Article  Google Scholar 

  20. Wang, J. C.: Variation of the average rotation angle of the DNA helix and the superhelical turns of covalently closed cyclic λ DNA. J. Mol. Biol.43, 25–39 (1969)

    Article  Google Scholar 

  21. Wang, J. C.: Degree of superhelicity of covalently closed cyclic DNA's fromEscherichia coli. J. Mol. Biol.43, 263–272 (1969)

    Article  Google Scholar 

  22. Wang, J. C.: Interaction between DNA and anEscherichia coli protein ω. J. Mol. Biol.55, 523–533 (1971)

    Article  Google Scholar 

  23. Wang, J. C.: The degree of unwinding of the DNA helix by ethidium I. Titration of twisted PM2 DNA molecules in alkaline cesium chloride density gradients. J. Mol. Biol.89, 783–801 (1974)

    Article  Google Scholar 

  24. Wang, J. C., Liu, L.: DNA topoisomerases: enzymes which catalyse the concerted breaking and rejoining of DNA backbone bonds. (To appear)

  25. Watson, J. D.: Molecular Biology of the Gene (3rd edition). Menlo Park, Calif.: Benjamin, 1976

    Google Scholar 

  26. White, J. H.: Self-linking and the Gauss integral in higher dimensions. American Journal of Mathematics91, 693–728 (1969)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pohl, W.F., Roberts, G.W. Topological consideration in the theory of replication of DNA. J. Math. Biology 6, 383–402 (1978). https://doi.org/10.1007/BF02463003

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02463003

Key words

Navigation