Skip to main content
Log in

An analysis of the mammalian ventricular action potential

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Summary

A Hodgkin-Huxley model for ventricular excitation is abstracted from electrophysiological data. A singular perturbation analysis of the 8-dimensional phase portrait of the model characterizes the role of calcium during the plateau phase of the ventricular action potential and demonstrates how the calcium refractory period prevents tetanization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adelman, W. J., Jr.: Biophysics and Physiology of Excitable Membranes. New York: Van Nostrand Reinhold Co., 1971

    Google Scholar 

  2. Adelman, W. J., FitzHugh, R.: Solutions of the Hodgkin-Huxley equations modified for potassium accumulation in a periaxonal space. Federation Proc.34, 1322–1329 (1975)

    Google Scholar 

  3. Armstrong, C. M., Benzanilla, F.: Charge movement associated with the opening and closing of the activation gates of Na channels. J. Gen. Physiol.63, 533–552 (1973)

    Article  Google Scholar 

  4. Bell, J., Cook, P.: A model of the nerve action potential. Submitted for publication, 1977

  5. Bell, J., Cook, L. P.: On solutions of a nerve conduction equation. Siam J. on Appl. Math, in press (1978)

  6. Carpenter, G. A.: A geometric approach to singular perturbation problems with applications to nerve impulse equations. J. Differential Equations23, 335–367 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  7. Carpenter, G. A.: A revised Hodgkin-Huxley model (in preparation)

  8. Carpenter, G. A.: Bursting phenomena in excitable membranes. Submitted for publication, 1976. SIAM J. on Appl. Math. (Subject to final revisions)

  9. Carpenter, G. A.: Periodic solutions of nerve impulse equations. J. Math. Anal. Appl.58, 152–173 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  10. DeMello, W. C. (editor): Electrical Phenomena in the Heart. New York: Academic Press, 1972

    Google Scholar 

  11. FitzHugh, R.: Thresholds and plateaus in the Hodgkin-Huxley nerve equations. J. Gen. Physiol.43, 867–896 (1960)

    Article  Google Scholar 

  12. Frankenhaueuser, B., Hodgkin, A. L.: The action of calcium on the electrical properties of squid axons. J. Physiol.137, 218–244 (1957)

    Google Scholar 

  13. Gettes, L. S., Reuter, H.: Slow recovery from inactivation of inward currents in mammalian myocardial fibres. J. Physiol.240, 703–724 (1974)

    Google Scholar 

  14. Goldman, J.: Principles of Clinical Electrocardiography, 8th edition. Los Altos, California: Lange Medical Publications, 1973

    Google Scholar 

  15. Hodgkin, A. L., Huxley, A. F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol.117, 500–544 (1952)

    Google Scholar 

  16. Hoyt, R. C.: Sodium inactivation in nerve fibers. Biophys. J.8, 1074–1097 (1968)

    Google Scholar 

  17. Hoyt, R. C., Adelman, W. J., Jr.: Sodium inactivation: experimental test of two models. Biophys. J.10, 610–617 (1970)

    Google Scholar 

  18. Jakobsson, E.: The physical interpretation of mathematical models for sodium permeability changes in excitable membranes. Biophys. J.13, 1200–1211 (1973)

    Google Scholar 

  19. Jakobsson, E., Scudiero, C.: A transient excited state model for sodium permeability changes in excitable membranes. Biophys. J.15, 577–590 (1975)

    Article  Google Scholar 

  20. Kohlhardt, M., Krause, H., Kubler, M., Herdey, A.: Kinetics of inactivation and recovery of the slow inward current in the mammalian ventricular myocardium. Pflügers Arch.355, 1–17 (1975)

    Article  Google Scholar 

  21. Kuffler, S. W., Nicholls, J. G.: From Neuron to Brain. Sunderland, Ma.: Sinauer Associates, 1976

    Google Scholar 

  22. Moore, L. E., Jakobsson, E.: Interpretation of the sodium permeability changes of myelinated nerve in terms of linear relaxation theory. J. Theor. Biol.33, 77–89 (1971)

    Article  Google Scholar 

  23. Noble, D., Tsien, R. W.: Outward membrane currents activated in the plateau range of potentials in cardiac Purkinje fibres. J. Physiol.200, 205–231 (1969).

    Google Scholar 

  24. Noble, D., Tsien, R. W.: Reconstruction of the repolarization process in cardiac Purkinje fibres based on voltage clamp measurements of membrane current. J. Physiol.200, 233–254 (1969)

    Google Scholar 

  25. Reuter, H.: Divalent cations as charge carriers in excitable membranes. Prog. in Biophys. and Molec. Bio.26, 1–43 (1973)

    Article  Google Scholar 

  26. Reuter, H.: Exchange of calcium ions in the mammalian myocardium, Circulation Res.34, 599–605 (1974)

    Google Scholar 

  27. Trautwein, W., McDonald, T. F., Tripathi, O.: Calcium conductance and tension in mammalian ventricular muscle. Pflügers Arch.354, 55–74 (1975)

    Article  Google Scholar 

  28. Trautwein, W.: Membrane currents in cardiac muscle fibers. Physiol. Reviews.53, 793–835 (1973)

    Google Scholar 

  29. Vender, A. J., Sherman, J. H., Luciano, D. S.: Human Physiology, 2nd edition. New York: McGraw-Hill, 1975

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported in part by the Undergraduate Research Opportunities Program, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carpenter, G.A., Knapp, V.R. An analysis of the mammalian ventricular action potential. J. Math. Biology 6, 305–316 (1978). https://doi.org/10.1007/BF02462996

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02462996

Key Words

Navigation