Skip to main content
Log in

The problem of gestalt in neurobiology

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Abstract

The question of gestalts is discussed within the framework of its neuronal mechanisms. Two basic hypotheses are considered: 1) that of gestalts as a result of the hierarchical organization of neurons (gnostic units), and 2) that of gestalts as a result of the synchronization of neurons of a given level. Analysis of published data led to the conclusion that gestalts resul from vector coding in the hierarchical organication of neurons. Highfrequency oscillations in the gamma range (40–200 Hz) are of endogenous origin, and their function is to reinforce the synaptic inputs to those neurons which are involved in the synthesis of a gestalt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. E. N. Sokolov and G. G. Vaitkyavichus, Neurointellect: From Neuron to Neurocomputer [in Russian], Nauka, Moscow (1989).

    Google Scholar 

  2. T. D. Allright and G. R. Stonger, “Visual motion perception,” Proc. Natl. Acad. Sci. USA,92, No. 7, 24 (1995).

    Google Scholar 

  3. F. R. Amthor and C. W. Oyster, “Spatial organization of retinal information about the direct of image motion,” Proc. Natl. Acad. Sci. USA,92, No. 7, 4002 (1995).

    Article  PubMed  CAS  Google Scholar 

  4. A. Bragin, G. Jando, Z. Nadasdy, et al., “Gamma (40–100 Hz) oscillations in the hippocampus of the behaving rat,” J. Neurosci.,15, No. 1, 47 (1995).

    PubMed  CAS  Google Scholar 

  5. S. Celebini and W. T. Newsome, “Neuronal and psychophysical sensitivity to motion signals in extrastriate area MST of the macaque monkey,” J. Neurosci.,14, No. 7, 4109 (1994).

    Google Scholar 

  6. O. D. Creutzfeldt, Cortese Cerebri: Performance, Structural and Functional Organization of the Cortex, Springer Verlag, Berlin, Heidelberg (1993).

    Google Scholar 

  7. J. C. Eccles, “Evolution of complexity of the brain with emergence of consciousness,” in: Rethinking Neuronal Networks: Quantum Fields and Biological K. H. Pribram (ed.), Lawrence Erlbaum Associates, Hillsdale (1994), p. 3.

    Google Scholar 

  8. R. Eckhorn, R. Bauer, W. Jordan, et al., “Coherent oscillations: a mechanism of feature linking in the visual cortex?” Biol. Cybernet.,60, 121 (1988).

    Article  CAS  Google Scholar 

  9. C. Fowler, “Auditory ‘objects’: The role of motor activity in auditory perception and speech perception,” in: Origins: Brain and Self-Organization, K. Pribram (ed.), Lawrence Erlbaum Associates, Hillsdale, New Jersey (1994), p. 593.

    Google Scholar 

  10. H.-G. Geissler, “The temporal architecture of central information processing: evidence for a tentative time quantum model,” Psychol. Research,193, No. 2, 374 (1987).

    Google Scholar 

  11. J. V. Haxby, Z. B. Horvi, L. G. Ungerleider, et al., “The functional organization of human extrastriate cortex: a PET-rCBF study of selective attention to faces and locations,” J. Neurosci.,14, No. 11, 6336 (1994)

    PubMed  CAS  Google Scholar 

  12. J. Hirsh, R. L. Delapaz, N. R. Relkin, et al., “Illusory contours activate specific regions in human visual cortex: evidence from functional magnetic resonance imaging,” Proc. Natl. Acad. Sci. USA,92, 6469 (1995).

    Article  Google Scholar 

  13. G. Johansson, Configurations in Event Perception, Almqvist a. Wiksell, Uppsala (1950).

    Google Scholar 

  14. G. Johansson, Configurations in event perception,” in: Perceiving Events and Objects, G. Jansson, et al. (eds.), Lawrence Erlbaum Associates, New Jersey (1994), p. 30.

    Google Scholar 

  15. G. Johansson, “Studies on visual perception of locomotion,” in: Perceiving Events and Objects, G. Jansson, et al. (eds.), Lawrence Erlbaum Associates, New Jersey (1994), p. 223.

    Google Scholar 

  16. D. Katz, “Die Erscheinungsweisen der Farben und ihre Beenflussung durch die individuelle Erfahrung,” Zeitschr. Psychol., Erganzungsband 7 (1911).

  17. K. Koffka, Principles of Gestalt Psychology, Harcourt Brace, New York (1935).

    Google Scholar 

  18. J. Konorskii, Integrative Activity of the Brain: An Interdisciplinary Approach, Chicago University Press, Chicago (1967).

    Google Scholar 

  19. W. Koehler, Gestalt Psychology: an Introduction to New Concepts in Modern Psychology. Leveright, New York (1947).

    Google Scholar 

  20. R. R. Llinas, A. A. Grace, and Y. Yarom, “In vitro neurons in mammalian cortical layer 4 exhibit intrinsic oscillatory activity in the 10 to 50 Hz frequency range,” Proc. Natl. Acad. Sci. USA,88, No. 1, 897 (1991).

    Article  PubMed  CAS  Google Scholar 

  21. Y. Miyashita, K. Sakai, S.-I. Miguchi, and N. Masui, “Localization of primal long-term memory in the primate temporal cortex,” in: Memory: Organization and Locus of Change, L. R. Squire, et al. (eds.), Oxford University Press, Oxford (1991), p. 239.

    Google Scholar 

  22. S. Neuenschwander and F. J. Valera, “Visually-triggered neuronal oscillations in the pigeon: an autocorrelation study of tectal activity,” in: Origins: Brain and Self-Organization, K. Pribram (ed.) Lawrence Erlbaum Associates, Hillsdale (1994), p. 497.

    Google Scholar 

  23. T. A. Palikhova, “Intracellular circulation of spines in central neurons of snail,” in: Simple Nervous Systems, D. A. Sakharov and B. Willow (eds.), Manchester University Press, Manchester (1993).

    Google Scholar 

  24. W. Singer, “Search for coherence: a basic principle of cortical self-organization,” Concepts in Neurosci.,1, 1 (1990).

    Google Scholar 

  25. E. N. Sokolov, “Local plasticity in neuronal learning,” in Memory: Organization and Locus of Change, L. R. Squire, et al. (eds.), Oxford University Press, New York (1991), p. 364.

    Google Scholar 

  26. L. Spillman and W. H. Ehrenstein, “From neuron to gestalt: mechanisms of visual perception,” in: Comprehensive Human Physiology, R. Greger et al. (eds.), Springer-Verlag, Berlin-Heidelberg-Tokyo (1995), Chapter 43.

    Google Scholar 

  27. M. Staller and P. Kruse, “Neurodynamics and synergetics,” in: Rethinking Neuronal Networks: Quantum Fields and Biological Data, K. H. Pribram (ed.), Lawrence Erlbaum Associates, Hillsdale, New Jersey (1994), p. 31.

    Google Scholar 

  28. O. Steward and G. A. Banker, “Getting the message from the gene to the synapse: sorting and intracellular transport of RNA in neurons,” TINS,15, No. 5, 180.

  29. H. Tiitinen, J. Sinkkonen, P. May, and R. Naatanen, “The auditory transient 40-Hz response is insensitive to changes in stimulus features,” Neurorsport,6, No. 1, 190 (1994).

    CAS  Google Scholar 

  30. R. W. Turner, L. Maler, S. R. Deerinck, et al., “TTX-sensitive sodium channels underlie oscillatory discharge in a vertebrate sensory neuron,” J. Neurosci.,14, No. 11, Part 1, 6433 (1994).

    Google Scholar 

  31. C. von der Malsburg and W. Schneider, “A neural cocktail-party processor,” Biol. Cybernet.,54, 29 (1986).

    Article  Google Scholar 

  32. X. Wang, “Ionic bases for intrinsic 40-Hz neuronal oscillations,” Neuroreport,5, No. 2, 221 (1993).

    Article  PubMed  CAS  Google Scholar 

  33. M. Wertheimer, “Untersuchung zur Lehre von der Gestalt (Studies on the theory of the gestalt)”, Psychol. Forschung.,4, 301 (1923).

    Article  Google Scholar 

Download references

Authors

Additional information

M. V. Lomonosov Moscow State University. Translated from Zhurnal Vysshei Nervnoi Deyatel'nosti, Vol. 46, No. 2, pp. 229–240; March–April, 1996.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sokolov, E.N. The problem of gestalt in neurobiology. Neurosci Behav Physiol 27, 323–332 (1997). https://doi.org/10.1007/BF02462931

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02462931

Keywords

Navigation