Skip to main content
Log in

Exact fundamental solutions of linear parabolic equations with spatially varying coefficients

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

The exact general solution is obtained to a linear second order ordinary differential equation which has quite general coefficients depending on an arbitrary function of the independent variable. From this, the exact fundamental solution is derived for the corresponding linear parabolic partial differential equation with coefficients depending on the single space coordinate. In a special case this latter equation reduces to one of the Fokker-Planck type. These coefficients are then generalised and the appropriate fundamental solution is obtained. Extensions are given to linear parabolic equations in two andn space dimensions. The paper provides a collection of basic examples which illustrate and develop the theory for the generation of the exact fundamental solutions. Reduction to, and the corresponding fundamental solutions of the Fokker-Planck equations is presented, where appropriate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Abramowitz, M. and I. A. Stegun. 1964.Handbook of Mathematical Functions, National Bureau of Standards, Appl. Math. Ser. 55. Washington: NBS.

    MATH  Google Scholar 

  • Chandrasekhar, S. 1943. “Stochastic Problems in Physics and Astronomy.”Rev. Mod. Phys.,15, 1–89.

    Article  MATH  MathSciNet  Google Scholar 

  • Dressel, F. G. 1940. “The Fundamental Solution of the Parabolic Equation.”Duke Math. J.,7, 186–203.

    Article  MATH  MathSciNet  Google Scholar 

  • — 1946. “The Fundamental Solution of the Parabolic Equation, II.”Duke Math. J.,13, 61–70.

    Article  MATH  MathSciNet  Google Scholar 

  • Dubin, N. 1976. “A Stochastic Model for Immunological Feedback in Carcinogenesis: Analysis and Approximations.” InLecture Notes in Biomathematics, Vol. 9. New York: Springer-Verlag.

    Google Scholar 

  • Feller, W. 1936. “Zur Theorie der stochastischen Prozesse.”Mathematische Annalen,113, 113–160.

    Article  MATH  MathSciNet  Google Scholar 

  • Fienberg, S. E. 1974. “Stochastic Models for Single Neuron Firing Trains: a Survey.”Biometrics,30, 399–427.

    Article  MATH  MathSciNet  Google Scholar 

  • Friedman, A. 1974. “Fundamental Solutions for Degenerate Parabolic Equations.” InLecture Notes in Mathematics, No. 415,Ordinary Differential Equations pp 144–148. New York: Springer-Verlag.

    Google Scholar 

  • Haimo, D. T. and F. M. Cholewinski. 1971. “Expansions in terms of Laguerre Heat Polynomials and of their Temperature Transforms.”J. D’Analyse Math.,XXIV, 285–322.

    Article  MathSciNet  Google Scholar 

  • Jensen, L. 1974. “Solving a Singular Diffusion Equation Occurring in Population Genetics.”J. Appl. Prob.,11, 1–15.

    Article  MATH  Google Scholar 

  • Kuptsov, L. P. 1974. “Mean Value Theorem and a Maximum Principle for Kolmogorov’s Equation.”Matematischeskie Zametki,15, 479–489. (Eng. Trans.—Math. Notes of the Acad. of Sci. of the USSR,15, 280–286).

    MATH  Google Scholar 

  • Lehnigk, S. H. 1976a. “Conservative Similarity Solutions of the One-dimensional Autonomous Parabolic Equation.”J. Appl. Math. Phys. (ZAMP),27 385–391.

    Article  MATH  MathSciNet  Google Scholar 

  • — 1976b. “A Class of Conservative Diffusion Processes with Delta Function Initial Conditions.”J. Math. Phys.,17, 973–976.

    Article  MATH  MathSciNet  Google Scholar 

  • Morgan, B. J. T. 1971. “On the Solution of Differential Equations Arising in Some Attachment of Models of Virology.”J. Appl. Prob.,8, 215–221.

    Article  MATH  Google Scholar 

  • Shatalov, V. E. 1972. “On Dirichlet Series formed from the Eigenvalues of Boundary Value Problems for an Arbitrary Differential Operator of Second Orders.”Differentsial’nye Uravneniya,8, 1267–1282. (Eng. Trans.—Differential Equations,8 (1974), 973–977).

    Google Scholar 

  • Swan, G. W. 1976. “Solution of Linear One-dimensional Diffusion Equations.”Bull. Math. Biol.,38, 1–13.

    MATH  MathSciNet  Google Scholar 

  • Voronka, R. and J. B. Keller. 1975. “Asymptotic Analysis of Stochastic Models in Population Genetics.”Math. Biosci.,25, 331–362.

    Article  MATH  MathSciNet  Google Scholar 

  • Weber, M. 1951. “The Fundamental Solution of a Degenerate Partial Differential Equation of Parabolic Type.”Trans. Am. Math. Soc.,71, 24–37.

    Article  MATH  Google Scholar 

  • Wette, R., I. N. Katz and E. Y. Rodin. 1974a. “Stochastic Processes for Solid Tumor Kinetics I. Surface-regulated Growth.”Math. Biosci.,19, 231–255.

    Article  MATH  Google Scholar 

  • —. 1974b. “Stochastic Processes for Solid Tumor Kinetics II. Diffusion-regulated Growth.”Math. Biosci.,21, 311–338.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Swan, G.W. Exact fundamental solutions of linear parabolic equations with spatially varying coefficients. Bltn Mathcal Biology 39, 435–451 (1977). https://doi.org/10.1007/BF02462922

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02462922

Keywords

Navigation