Skip to main content
Log in

A logical model of genetic activities in Lukasiewicz algebras: The non-linear theory

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

A categorical framework for logical models of functional genetic systems is proposed. The logical models of genetic nets are shown to simulate non-linear systems withn-state components and allow for the generalization of previous logical models of neural nets. An algebraic formulation of variable ‘next-state functions’ is presented which can be used for the description of developmental processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Baianu, I. 1970. “Organismic Supercategories: II. On Multistable Systems.”Bull. Math. Biophys., 32, 539–561.

    MATH  MathSciNet  Google Scholar 

  • Baianu, I. 1971. “Organismic Supercategories and Qualitative Dynamics of Systems.” —Ibid.,33, 339–353.

    MATH  Google Scholar 

  • Baianu, I. 1973. “Some Algebraic Properties of (M, R)-Systems.”Bull. Math. Biol.,35, 213–217.

    Article  MATH  MathSciNet  Google Scholar 

  • Carnap, R. 1938. “The Logical Syntax of Language.” New York: Harcourt, Brace and Co.

    Google Scholar 

  • Georgescu, G. and C. Vraciu. 1970. “On the Characterization of Lukasiewicz Algebras.”J. Algebra,16, 4, 486–495.

    Article  MATH  MathSciNet  Google Scholar 

  • Hilbert, D. and W. Ackerman. 1927.Gründuge der Theoretischen Log k. Berlin: Springer.

    Google Scholar 

  • Landahl, H. D., W. S. McCulloch and W. Pitts. 1943.Bull. Math. Biophys.,5, 135–137.

    MATH  MathSciNet  Google Scholar 

  • Löfgren, L. 1968. “An Axiomatic Explanation of Complete Self-Reproduction.”Bull. Math. Biophys.,30, 317–348.

    Google Scholar 

  • McCulloch, W. and W. Pitts. 1943. “A Logical Calculus of Ideas Immanent in Nervous Activity.” —Ibid.,5, 115–133.

    MATH  MathSciNet  Google Scholar 

  • Moisil, G. 1940. “Recherches sur les logiques non-chryssipiennes.”Annales scientifiques de l'Université de Jassy,26, 431–466.

    MATH  MathSciNet  Google Scholar 

  • Pitts, W. 1943. “The Linear Theory of Neuron Networks.”Bull. Math. Biophys.,5, 23–31.

    MATH  MathSciNet  Google Scholar 

  • Rashevsky, N. 1965. “The Representation of Organisms in Terms of Predicates.” —Ibid.,27, 477–491.

    Google Scholar 

  • Rashevsky, N. 1968. “Neurocybernetics as a Particular Case of General Regulating Mechanisms in Biological and Social Organisms.”Concepts de l'Age de la Science,3, 243–258.

    Google Scholar 

  • Rosen, R. 1958a. “A Relational Theory of Biological System.”Bull. Math. Biophys.,20, 245–260.

    MathSciNet  Google Scholar 

  • Rosen, R. 1958b. “The Representation of Biological Systems form the Standpoint of the Theory of Categories.”Bull. Math. Biophys.,20, 317–341.

    MathSciNet  Google Scholar 

  • Rosen, R. 1970.Dynamical Systems in Biology. A 2-volume Text-Monograph, vol. 1, New York: John Wiley & Sons, Inc. Ch. 8. pp. 236–249.

    Google Scholar 

  • Russel, Bertrand and A. N. Whitehead, 1925.Principia Mathematica, Cambridge: Cambridge Univ. Press.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bâianu, I.C., Inst. P., M. A logical model of genetic activities in Lukasiewicz algebras: The non-linear theory. Bltn Mathcal Biology 39, 249–258 (1977). https://doi.org/10.1007/BF02462863

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02462863

Keywords

Navigation