The use of antioxidants to prevent glutamate-induced derangement of calcium ion metabolism in rat cerebral cortex synaptosomes


Glutamate is shown to induce increases in intracellular Ca2+ concentrations ([Ca2+]i), increases in45Ca2+ influx, decreases in the activity of Na+, K+,-ATPase activity, and activation of the Na+/Ca2+ exchanger in rat cerebral cortex synaptosomes. NMDA receptor antagonists virtually prevented these effects. Preincubation of synaptosomes with α-tocopherol, superoxide dismutase, and ganglioside GM1 normalized [Ca2+]i,45Ca2+, influx, and Na+, K+-ATPase activity in rat cerebral cortex synaptosomes exposed to glutamate. Glutamate and GM1 activated the Na+/K+ exchanger, and their effects were additive. Calcium ions entering cerebral cortex nerve cells via NMDA receptors during exposure to high glutamate concentrations appeared to be only the trigger for the processes activating free-radical reactions. Activation of these reactions led to increases in Ca2+ influx into cells, decreases in Na+, K+-ATPase activity, and significant increases in [Ca2+]i, though this could be prevented by antioxidants and gangliosides.

This is a preview of subscription content, access via your institution.


  1. 1.

    E. B. Burlakova and N. G. Khranova, “Lipid peroxidation and natural antioxidants,”Usp Khimii,54, No. 9, 1540–1546 (1985).

    CAS  Google Scholar 

  2. 2.

    E. M. Kreps,Lipids of the Cell Membrane [in Russian], Nauka, Leningrad (1985).

    Google Scholar 

  3. 3.

    V. A. Tyurin, A. Ya. Bagrov, O. V. Fedorova, E. P. Zhabko, Yu. Yu. Tyurina, D. K. Das, N. F. Avrova, and V. E. Kagan, “Protection erythrocyte membranes by gangliosides in myocardial ischemia,”Byull. Éksp. Biol. Med.,114, No. 10, 366–368 (1992).

    CAS  Google Scholar 

  4. 4.

    N. Andreeva, B. Khorodorov, E. Stelmaschuk, E. Cragoe, and I. Victorov, “Inhibition of Na+/Ca2+ exchange enahnces delayed neuronal death elicited by glutamate in cerebellar granule cells,”Brain Res.,548, 322–325 (1991).

    PubMed  CAS  Article  Google Scholar 

  5. 5.

    N. F. Avrova, I. V. Victorov, V. A. Tyurin, I. O. Zakharova, T. V. Sokolova, N. A. Andreeva, E. V. Stelmaschuk, Y. Y. Tyurina, and V. S. Gonchar, “Inhibition of glutamate-induced intensification of free radical reactions by gangliosides: possible role in their protective effect in rat cerebellar granule cells and brain synaptosomes,”Neurochem. Res.,23, No. 7, 945–952 (1998).

    PubMed  CAS  Article  Google Scholar 

  6. 6.

    J. Bressler, L. Beloni-Olivi, and S. Forman, “Effect of ganglioside GM1 on arachidonic acid release in bovine aortic endothelial cells,”Life Sci.,54, 49–60 (1994).

    PubMed  CAS  Article  Google Scholar 

  7. 7.

    M. Cardell and T. Wieloch, “Time course of the translocation and inhibition of protein kinase C during complete cerebral ischemia in rats,”J. Neurochem.,61, No. 4, 1308–1314 (1993).

    PubMed  CAS  Google Scholar 

  8. 8.

    D. W. Choi and S. M. Rothman, “The role of glutamate neurotoxicity in hypoxic-ischemic neuronal death,”Ann. Rev. Neurosci.,13, 171–182 (1990).

    PubMed  CAS  Article  Google Scholar 

  9. 9.

    T. Costa, D. Armstrong, A. Guidotti, A. Kharlomov, I. Kiedrowski, and J. T. Wroblewski, “Ganglioside GM1 and its semisynthetic lysoganglioside analogues reduce glutamate neurotoxicity by a novel mechanism,”Adv. Exp. Biol. Med.,341, 129–141 (1993).

    CAS  Google Scholar 

  10. 10.

    O. P. Couninho, C. A. Carvalho, and A. P. Carvalho, “Calcium uptake related to K+ depolarization and Na+/Ca2+ exchange in sheep brain synaptosomes,”Brain Res.,290, 261–271 (1984).

    Article  Google Scholar 

  11. 11.

    K. Domanska-Janik and T. Zalewska, “Effect of brain ischemia on protein kinase C,”J., Neurochem.,58, No. 4, 1432–1439 (1992).

    CAS  Google Scholar 

  12. 12.

    J. P. Durkin, R. Tremblay, A. Buchan, B. Chakravathy, G. Mealing, P. Morley, and D. J. Song, “An early loss in membrane protein kinase C activity precedes the excitatory amino acid mediated death of primary cortical neuros,”Neurochem.,66, No. 3, 951–962 (1996).

    CAS  Article  Google Scholar 

  13. 13.

    M. Favaron, H. Manev, H. Alho, M. Bertolino, B. Ferret, A. Guidotti, and E. Costa, “Gangliosides prevent glutamate and kainate neurotoxicity in primary neuronal cultures of neonatal rat cerebellum and cortex,”Proc. Natl. Acad. Sci. USA,85, 7351–7355 (1988).

    PubMed  CAS  Article  Google Scholar 

  14. 14.

    M. Favaron, H. Manev, R. Siman, H. Bertolino, A. M. Szekely, G. De Erausquin, A. Guidotti, and R. Costa, “Down-regulation of protein kinase C protects cerebellar granule neurons in primary culture from glutamate neuronal death,”Proc. Natl. Acad. Sci. USA,87, 1983–1987 (1990).

    PubMed  CAS  Article  Google Scholar 

  15. 15.

    J. Folch, M. Lees, and G. H. Sloan-Stanley, “A simple method for isolation and purification of total lipids from animal tissue,”J. Biol. Chem.,226, 497–509 (1957).

    PubMed  CAS  Google Scholar 

  16. 16.

    G. Grynkewicz, M. Penie, and R. Y. Tsien, “A new generation of Ca2+ indicators with greatly improved fluorescence properties,”J. Biol. Chem.,260, No. 6, 3440–3450 (1985).

    Google Scholar 

  17. 17.

    B. Guerold, R. Massarelli, V. Forster, L. Freyz, and H. Dreyfus, “Exogenous gangliosides modulate calcium fluxes in cultured neuronal cells,”J. Neurosci. Res.,32, 110–115 (1992).

    PubMed  CAS  Article  Google Scholar 

  18. 18.

    F. Hajos, “An improved method for the preparation of synaptosomal fractions in high purity,”Brain Res.,93, 485–489 (1975).

    PubMed  CAS  Article  Google Scholar 

  19. 19.

    S. Isasi, I. D. Bianko, and G. D. Fidelio, “Gangliosides raise the intracellular Ca2+ level in different cell types,”Life Sci.,57, No. 5, 449–456 (1995).

    PubMed  CAS  Article  Google Scholar 

  20. 20.

    A. Leon, L. Facci, G. Toffano, S. Sonnino, and G. Tettamani, “Activation of Na+ K+-ATPase by nanomolar concentrations of GM1 gangliosides,”J. Neurochem.,37, 350–357 (1981).

    PubMed  CAS  Google Scholar 

  21. 21.

    S. P. Mahadic, B. L. Hunnud, and V. S. Gokhale, “Monosialoganglioside GM1 restores membrane fatty acid levels neuron ischemic tissue after cortical focal ischemia in rats,”Neurochem. Int.,23, 163–172 (1993).

    Article  Google Scholar 

  22. 22.

    J. O. Malva, A. F. Ambrosio, A. P. Carvalho, and C. M. Carvalho, “Increase of the intracellular Ca2+ concentration mediated by transport of glutamate into rat hippocampal synaptosomes, characterization of the activated voltage sensitive Ca2+ channels,”Neurochem. Int.,32, No. 1, 17 (1998).

    Article  Google Scholar 

  23. 23.

    G. Marcaida, E. Kosenko, M. D. Mianana, S. Grisolia, and V. Felipo, “Glutamate induces a calcineuin-mediated dephosphorylation of Na+, K+-ATPase that results in its activation in cerebellar neurons in culture,”J. Neurochem.,66, 99–104 (1996).

    PubMed  CAS  Article  Google Scholar 

  24. 24.

    R. J. Mark, K. Hensley, D. A. Butterfield, and M. P. Mattson, “Amyloid β-peptide impairs ion-motive ATPase activities, evidence for a role in loss of neuronal homeostasis,”J. Neurosci.,15, 6239–6249 (1995).

    PubMed  CAS  Google Scholar 

  25. 25.

    M. A. H. Markwell, S. M. Haos, L. L. Bielber, and N. E. Tolbert, “A modification of Lowry procedure to simplify protein determination in membrane and liporotein samples,”Anal. Biochem.,87, No. 1, 206–210 (1978).

    PubMed  CAS  Article  Google Scholar 

  26. 26.

    M. P. Mattson, M. A. Lovel, K. Furukuwa, and W. R. Markesbery, “Neurotrophic factors attenuate glutamate-induced accumulation of peroxides, elevation of intracellular Ca2+ concentration, and neurotoxicity and increase antioxidant enzyme activity in hippocampal neurons,”J. Neurochem.,65, No. 4, 1740–1751 (1995).

    PubMed  CAS  Article  Google Scholar 

  27. 27.

    G. Milani, D. Guidolin, L. Facci, T. Pozzan, M. Buso, A. Leon, and S. D. Scaper, “Excitatory amino acid-induced alterations of cytoplasmic free Ca2+ in individual cerebellar granule neurons, role in neurotoxicity,”J. Neurosci. Res.,28, No. 3, 434–441 (1991).

    PubMed  CAS  Article  Google Scholar 

  28. 28.

    A. Moller, P. Christophersen, J. Drejer, O. Aleksson, D. Peters, L. H. Jensen, and E. O. Nielson, “Pharmacological profile and anti-ischemic properties of Ca2+ channel blocker NS-638,”Neurol. Res.,17, No. 5, 353–360 (1995).

    PubMed  CAS  Google Scholar 

  29. 29.

    C. M. Palmeira, M. S. Santos, A. P. Carvalho, and C. R. Oliveira, “Membrane lipid peroxidation induces changes in γ-[3H]aminobutyric acid transport and calcium uptake by synaptosomes,”Brain Res.,609, 117–123 (1993).

    PubMed  CAS  Article  Google Scholar 

  30. 30.

    S. Sanchez-Armass and M. P. Blaustein, “Role of sodium-calcium exchange in regulation of intracellular calcium in nerve terminals,”Amer. J. Physiol.,252,(Cell Physiol.,21), 595–603 (1987).

    Google Scholar 

  31. 31.

    J. Szkudlarek, L. Lachowicz, and R. Wojtkowiak, “Effects in vitro of L-glutamate and kainic acid on the ATPase activities of synaptosomal membranes from different areas of rat brain,”Neurosci. Lett.,65, 304–310 (1986).

    PubMed  CAS  Article  Google Scholar 

  32. 32.

    L. Tretter, Ch. Chinopoulos, and V. Adam-Vizi, “Enhanced depolarization-evoked calcium signal and reduced [ATP]/[ADP] ratio are unrelated events induced by oxidative stress in synaptosomes,”J. Neurochem.,69, 2529–2537 (1997).

    PubMed  CAS  Article  Google Scholar 

  33. 33.

    V. A. Tyurin, Y. Y. Tyurina, and N. F. Avrova, “Ganglioside-dependent factor, inhibiting lipid peroxidation in rat brain synaptosomes,”Neurochem. Int.,20, 401–407 (1992).

    PubMed  CAS  Article  Google Scholar 

  34. 34.

    R. Wen and B. Oakley, “Ion-selective microelectrodes suitable for recording rapid changes in extracellular ion concentration,”J. Neurosci. Meth.,23, 207–213 (1990).

    Article  Google Scholar 

  35. 35.

    G., Wu, K. K. Vaswani, L.-H. Lu, and R. W. Ledeen, “Gangliosides stimulate calcium flux in neuro-2A cells and require exogenous calcium for neuritogenesis,”J. Neurochem.,55, 484–491 (1990).

    PubMed  CAS  Google Scholar 

  36. 36.

    S. L. Yates, E. N. Fluhler, and P. M. Lippiello, “Advances in the use of the fluorescent prove Fura-2 for the estimation of intrasynaptosomal calcium,”J. Neurosci. Res.,32, 255–260 (1992).

    PubMed  CAS  Article  Google Scholar 

  37. 37.

    Y. Zhou, V. Gopalkrishnan, and J. S. Richardson, “Actions of neurotoxic ß-amyloid on calcium homeostasis and viability of PC12 cells are blocked by antioxidants but not by calcium channel antagonists,”J. Neurochem.,67, No. 4, 1419–1425 (1997).

    Article  Google Scholar 

Download references

Author information



Additional information

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 85, No. 4, pp. 488–496, April. 1999.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Avrova, N.F., Shestak, K.I., Zakharova, I.O. et al. The use of antioxidants to prevent glutamate-induced derangement of calcium ion metabolism in rat cerebral cortex synaptosomes. Neurosci Behav Physiol 30, 535–541 (2000).

Download citation

Key Words

  • Glutamate
  • calcium ions
  • antioxidants
  • GM1 ganglioside
  • brain synaptosomes