Abstract
Glutamate is shown to induce increases in intracellular Ca2+ concentrations ([Ca2+]i), increases in45Ca2+ influx, decreases in the activity of Na+, K+,-ATPase activity, and activation of the Na+/Ca2+ exchanger in rat cerebral cortex synaptosomes. NMDA receptor antagonists virtually prevented these effects. Preincubation of synaptosomes with α-tocopherol, superoxide dismutase, and ganglioside GM1 normalized [Ca2+]i,45Ca2+, influx, and Na+, K+-ATPase activity in rat cerebral cortex synaptosomes exposed to glutamate. Glutamate and GM1 activated the Na+/K+ exchanger, and their effects were additive. Calcium ions entering cerebral cortex nerve cells via NMDA receptors during exposure to high glutamate concentrations appeared to be only the trigger for the processes activating free-radical reactions. Activation of these reactions led to increases in Ca2+ influx into cells, decreases in Na+, K+-ATPase activity, and significant increases in [Ca2+]i, though this could be prevented by antioxidants and gangliosides.
This is a preview of subscription content,
to check access.References
E. B. Burlakova and N. G. Khranova, “Lipid peroxidation and natural antioxidants,”Usp Khimii,54, No. 9, 1540–1546 (1985).
E. M. Kreps,Lipids of the Cell Membrane [in Russian], Nauka, Leningrad (1985).
V. A. Tyurin, A. Ya. Bagrov, O. V. Fedorova, E. P. Zhabko, Yu. Yu. Tyurina, D. K. Das, N. F. Avrova, and V. E. Kagan, “Protection erythrocyte membranes by gangliosides in myocardial ischemia,”Byull. Éksp. Biol. Med.,114, No. 10, 366–368 (1992).
N. Andreeva, B. Khorodorov, E. Stelmaschuk, E. Cragoe, and I. Victorov, “Inhibition of Na+/Ca2+ exchange enahnces delayed neuronal death elicited by glutamate in cerebellar granule cells,”Brain Res.,548, 322–325 (1991).
N. F. Avrova, I. V. Victorov, V. A. Tyurin, I. O. Zakharova, T. V. Sokolova, N. A. Andreeva, E. V. Stelmaschuk, Y. Y. Tyurina, and V. S. Gonchar, “Inhibition of glutamate-induced intensification of free radical reactions by gangliosides: possible role in their protective effect in rat cerebellar granule cells and brain synaptosomes,”Neurochem. Res.,23, No. 7, 945–952 (1998).
J. Bressler, L. Beloni-Olivi, and S. Forman, “Effect of ganglioside GM1 on arachidonic acid release in bovine aortic endothelial cells,”Life Sci.,54, 49–60 (1994).
M. Cardell and T. Wieloch, “Time course of the translocation and inhibition of protein kinase C during complete cerebral ischemia in rats,”J. Neurochem.,61, No. 4, 1308–1314 (1993).
D. W. Choi and S. M. Rothman, “The role of glutamate neurotoxicity in hypoxic-ischemic neuronal death,”Ann. Rev. Neurosci.,13, 171–182 (1990).
T. Costa, D. Armstrong, A. Guidotti, A. Kharlomov, I. Kiedrowski, and J. T. Wroblewski, “Ganglioside GM1 and its semisynthetic lysoganglioside analogues reduce glutamate neurotoxicity by a novel mechanism,”Adv. Exp. Biol. Med.,341, 129–141 (1993).
O. P. Couninho, C. A. Carvalho, and A. P. Carvalho, “Calcium uptake related to K+ depolarization and Na+/Ca2+ exchange in sheep brain synaptosomes,”Brain Res.,290, 261–271 (1984).
K. Domanska-Janik and T. Zalewska, “Effect of brain ischemia on protein kinase C,”J., Neurochem.,58, No. 4, 1432–1439 (1992).
J. P. Durkin, R. Tremblay, A. Buchan, B. Chakravathy, G. Mealing, P. Morley, and D. J. Song, “An early loss in membrane protein kinase C activity precedes the excitatory amino acid mediated death of primary cortical neuros,”Neurochem.,66, No. 3, 951–962 (1996).
M. Favaron, H. Manev, H. Alho, M. Bertolino, B. Ferret, A. Guidotti, and E. Costa, “Gangliosides prevent glutamate and kainate neurotoxicity in primary neuronal cultures of neonatal rat cerebellum and cortex,”Proc. Natl. Acad. Sci. USA,85, 7351–7355 (1988).
M. Favaron, H. Manev, R. Siman, H. Bertolino, A. M. Szekely, G. De Erausquin, A. Guidotti, and R. Costa, “Down-regulation of protein kinase C protects cerebellar granule neurons in primary culture from glutamate neuronal death,”Proc. Natl. Acad. Sci. USA,87, 1983–1987 (1990).
J. Folch, M. Lees, and G. H. Sloan-Stanley, “A simple method for isolation and purification of total lipids from animal tissue,”J. Biol. Chem.,226, 497–509 (1957).
G. Grynkewicz, M. Penie, and R. Y. Tsien, “A new generation of Ca2+ indicators with greatly improved fluorescence properties,”J. Biol. Chem.,260, No. 6, 3440–3450 (1985).
B. Guerold, R. Massarelli, V. Forster, L. Freyz, and H. Dreyfus, “Exogenous gangliosides modulate calcium fluxes in cultured neuronal cells,”J. Neurosci. Res.,32, 110–115 (1992).
F. Hajos, “An improved method for the preparation of synaptosomal fractions in high purity,”Brain Res.,93, 485–489 (1975).
S. Isasi, I. D. Bianko, and G. D. Fidelio, “Gangliosides raise the intracellular Ca2+ level in different cell types,”Life Sci.,57, No. 5, 449–456 (1995).
A. Leon, L. Facci, G. Toffano, S. Sonnino, and G. Tettamani, “Activation of Na+ K+-ATPase by nanomolar concentrations of GM1 gangliosides,”J. Neurochem.,37, 350–357 (1981).
S. P. Mahadic, B. L. Hunnud, and V. S. Gokhale, “Monosialoganglioside GM1 restores membrane fatty acid levels neuron ischemic tissue after cortical focal ischemia in rats,”Neurochem. Int.,23, 163–172 (1993).
J. O. Malva, A. F. Ambrosio, A. P. Carvalho, and C. M. Carvalho, “Increase of the intracellular Ca2+ concentration mediated by transport of glutamate into rat hippocampal synaptosomes, characterization of the activated voltage sensitive Ca2+ channels,”Neurochem. Int.,32, No. 1, 17 (1998).
G. Marcaida, E. Kosenko, M. D. Mianana, S. Grisolia, and V. Felipo, “Glutamate induces a calcineuin-mediated dephosphorylation of Na+, K+-ATPase that results in its activation in cerebellar neurons in culture,”J. Neurochem.,66, 99–104 (1996).
R. J. Mark, K. Hensley, D. A. Butterfield, and M. P. Mattson, “Amyloid β-peptide impairs ion-motive ATPase activities, evidence for a role in loss of neuronal homeostasis,”J. Neurosci.,15, 6239–6249 (1995).
M. A. H. Markwell, S. M. Haos, L. L. Bielber, and N. E. Tolbert, “A modification of Lowry procedure to simplify protein determination in membrane and liporotein samples,”Anal. Biochem.,87, No. 1, 206–210 (1978).
M. P. Mattson, M. A. Lovel, K. Furukuwa, and W. R. Markesbery, “Neurotrophic factors attenuate glutamate-induced accumulation of peroxides, elevation of intracellular Ca2+ concentration, and neurotoxicity and increase antioxidant enzyme activity in hippocampal neurons,”J. Neurochem.,65, No. 4, 1740–1751 (1995).
G. Milani, D. Guidolin, L. Facci, T. Pozzan, M. Buso, A. Leon, and S. D. Scaper, “Excitatory amino acid-induced alterations of cytoplasmic free Ca2+ in individual cerebellar granule neurons, role in neurotoxicity,”J. Neurosci. Res.,28, No. 3, 434–441 (1991).
A. Moller, P. Christophersen, J. Drejer, O. Aleksson, D. Peters, L. H. Jensen, and E. O. Nielson, “Pharmacological profile and anti-ischemic properties of Ca2+ channel blocker NS-638,”Neurol. Res.,17, No. 5, 353–360 (1995).
C. M. Palmeira, M. S. Santos, A. P. Carvalho, and C. R. Oliveira, “Membrane lipid peroxidation induces changes in γ-[3H]aminobutyric acid transport and calcium uptake by synaptosomes,”Brain Res.,609, 117–123 (1993).
S. Sanchez-Armass and M. P. Blaustein, “Role of sodium-calcium exchange in regulation of intracellular calcium in nerve terminals,”Amer. J. Physiol.,252,(Cell Physiol.,21), 595–603 (1987).
J. Szkudlarek, L. Lachowicz, and R. Wojtkowiak, “Effects in vitro of L-glutamate and kainic acid on the ATPase activities of synaptosomal membranes from different areas of rat brain,”Neurosci. Lett.,65, 304–310 (1986).
L. Tretter, Ch. Chinopoulos, and V. Adam-Vizi, “Enhanced depolarization-evoked calcium signal and reduced [ATP]/[ADP] ratio are unrelated events induced by oxidative stress in synaptosomes,”J. Neurochem.,69, 2529–2537 (1997).
V. A. Tyurin, Y. Y. Tyurina, and N. F. Avrova, “Ganglioside-dependent factor, inhibiting lipid peroxidation in rat brain synaptosomes,”Neurochem. Int.,20, 401–407 (1992).
R. Wen and B. Oakley, “Ion-selective microelectrodes suitable for recording rapid changes in extracellular ion concentration,”J. Neurosci. Meth.,23, 207–213 (1990).
G., Wu, K. K. Vaswani, L.-H. Lu, and R. W. Ledeen, “Gangliosides stimulate calcium flux in neuro-2A cells and require exogenous calcium for neuritogenesis,”J. Neurochem.,55, 484–491 (1990).
S. L. Yates, E. N. Fluhler, and P. M. Lippiello, “Advances in the use of the fluorescent prove Fura-2 for the estimation of intrasynaptosomal calcium,”J. Neurosci. Res.,32, 255–260 (1992).
Y. Zhou, V. Gopalkrishnan, and J. S. Richardson, “Actions of neurotoxic ß-amyloid on calcium homeostasis and viability of PC12 cells are blocked by antioxidants but not by calcium channel antagonists,”J. Neurochem.,67, No. 4, 1419–1425 (1997).
Author information
Authors and Affiliations
Additional information
Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 85, No. 4, pp. 488–496, April. 1999.
Rights and permissions
About this article
Cite this article
Avrova, N.F., Shestak, K.I., Zakharova, I.O. et al. The use of antioxidants to prevent glutamate-induced derangement of calcium ion metabolism in rat cerebral cortex synaptosomes. Neurosci Behav Physiol 30, 535–541 (2000). https://doi.org/10.1007/BF02462611
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF02462611