Bulletin of Mathematical Biology

, Volume 41, Issue 5, pp 665–686 | Cite as

Qualitative analysis of a model generating long potential waves in Ba-treated nerve cells—I. Reduced systems

  • José Argémi
  • Maurice Gola
  • Hélène Chagneux


This study is related to a model describing the behavior of barium-treatedAplysia neurons generating regular burst-plateau patterns. The model is represented by an autonomous dynamical system, defined inR 4 and depending on a small parameter. This paper is restricted to the qualitative study of three “reduced systems” deduced from the “complete system”. Part of the study is performed with the use of the qualitative theory of singular perturbations. The predicted behaviors are compared with experimental results.


Periodic Solution Singular Point Outward Current Potential Wave Slow Manifold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andronov, A. A., A. A. Vitt and S. E. Khaikin. 1966.Theory of Oscillators, English translation. Reading, Mass.: Addison Wesley.MATHGoogle Scholar
  2. Argémi, J. 1968. “Sur les Points Singuliers Multiples de Systèmes Dynamiques dansR 2.”Annali Mat. Pura Appl.,79, 35–70.MATHCrossRefGoogle Scholar
  3. Arvanitaki, A. 1962. “Plateaux de Dépolarisation et Trains Paroxystiques de Pointes en Hyperthermie sur Certains Neurones Identifiables d'Aplysia.”C.R. Acad. Sci., Paris,255, 1523–1525.Google Scholar
  4. Bendixson, I. 1901. “Sur les Courbes Définies par des Équations Différentielles.”Acta Math., Scand.,24, 1–88.MathSciNetGoogle Scholar
  5. Both, R., W. Finger and R. A. Chaplain. 1976. “Model Predictions of the Ionic Mechanisms Underlying the Beating and Bursting Pacemaker Characteristics of Molluscan Neurons.”Biol. Cybernetics,23, 1–11.CrossRefGoogle Scholar
  6. Chalazonitis, N. 1977. “Introduction to Neuronal Burst Activity.”J. Physiol, Paris,73, 441–452.Google Scholar
  7. Dubois-Violette, P. L. 1943. “Sur les Points Singuliers Exceptionnels des Équations Différentielles du Premier Ordre Considérés Comme Limites de Points Singuliers Simples.”C.R. Acad. Sci., Oaris,217, 567–569.MATHMathSciNetGoogle Scholar
  8. Ducreux, C. and M. Gola. 1975. “Ondes Paroxysmales Induites par le Métrazol (PTZ) sur les Neurones d'Helix p.: Modèle Fonctionnel.”Pflüger Arch.,361, 43–53.CrossRefGoogle Scholar
  9. — and—. 1977. “Ionic Mechanism of Ba2+-Induced Square-Shaped Potential Waves in Molluscan Neurons.”Brain Res.,123, 384–389.CrossRefGoogle Scholar
  10. Eckert, R. and H. D. Lux. 1976. “A Voltage-Sensitive Persistent Calcium Conductance in Neuronal Somata ofHelix.J. Physiol., Lond.,254, 129–151.Google Scholar
  11. El'sgol'c, L. E. 1964.Qualitative Methods in Mathematical Analysis. Am. Math. Soc. Providence, R.I.Google Scholar
  12. Fitz-Hugh, R. 1960. “Thresholds and Plateus in the Hodgkin-Huxley Nerve Equations.”J. Gen. Physiol.,43, 867–896.CrossRefGoogle Scholar
  13. —, 1961. “Impulses and Physiological States in Theoretical Models of Nerve Membrane.”Biophys. J.,1, 445–466.Google Scholar
  14. Gola, M. 1974. “Neurones à Ondes-Salves des Mollusques. Variations Cycliques Lentes des Conductances Ioniques.”Pflügers Arch.,352, 17–36.CrossRefGoogle Scholar
  15. Gola, M., C. Ducreux and H. Chagneux. 1977. “Ionic Mechanism of Slow Potential Wave Production in Barium-TreatedAplysia Neurons.”J. Physiol., Paris,73, 407–440.Google Scholar
  16. Leicht, R., H. Meves and H. H. Wellhoner. 1971. “The Effect of Veratridine onHelix pomatia Neurones.”Pflügers Arch.,323, 50–62.CrossRefGoogle Scholar
  17. Mathieu, P. A. and F. A. Roberge. 1971. “Characteristics of Pacemaker Oscillations inAplysia Neurons.”Can. J. Physiol. Pharmac.,49, 787–795.Google Scholar
  18. Magura, I. S. 1977. “Long-Lasting Inward Current in Snail Neurons in Barium Solutions in Voltage-Clamp Conditions.”J. Membrane Biol.,35, 239–256.CrossRefGoogle Scholar
  19. Plant, R. E. 1976. “The Geometry of the Hodgkin-Huxley Model.”Computer Programs Biomedicine,6, 85–91.CrossRefGoogle Scholar
  20. — and M. Kim. 1976. “Mathematical Description of a Bursting Pacemaker Neuron by a Modification of the Hodgkin-Huxley Equations.”Biophys. J.,16, 227–244.CrossRefGoogle Scholar
  21. Pontryagin, L. S. 1957. “Asymptotic Behavior of the Solutions of Systems of Differential Equations with a Small Parameter in the Higher Derivatives.”Izv. Akad. Nauk SSSR (ser. matem.),253, 450–452. (Russian)MathSciNetGoogle Scholar
  22. Tihonov, A. N. 1948. “On the Dependence of the Solutions of Differential Equations on a Small Parameter.”Math. Sb. (N.S.),22, 193–204. (Russian)MATHMathSciNetGoogle Scholar
  23. Ulbricht, W. 1969. “The Effects of Veratridine on Excitable Membranes of Nerve and Muscle.”Ergebn. Physiol., Rev. Physiol.,61, 18–71.Google Scholar
  24. Wilson, W. A. and H. Wachtel. 1974. “Negative Resistance Characteristic Essential for the Maintenance of Slow Oscillations in Bursting Neurons.”Science,186, 932–934.Google Scholar
  25. Zeeman, E. C. 1973. “Differential Equations for the Heartbeat and Nerve Impulse”. InDynamical Systems, Ed. M. Peixoto, pp. 683–741. New York: Academic Press.Google Scholar

Copyright information

© Society for Mathematical Biology 1979

Authors and Affiliations

  • José Argémi
    • 1
  • Maurice Gola
    • 2
  • Hélène Chagneux
    • 2
  1. 1.Laboratoire de Mécanique et d'AcoustiqueC.N.R.S.Marseille cédex 2France
  2. 2.Institut de Neurophysiologie et de PsychophysiologieC.N.R.S.Marseille cédex 2France

Personalised recommendations