Skip to main content
Log in

Predator-prey systems with group defence: The paradox of enrichment revisited

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

The main concern of this paper is with survival or extinction of predators in models of predator-prey systems exhibiting group defence of the prey. It is shown that if there is no mutual interference among predators, enrichment could result in their extinction. However, if there is mutual interference, the predator population survives (at least deterministically).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Andrews, J. F. 1968. “A Mathematical Model for the Continuous Culture of Microorganisms Utilizing Inhibitory Substrates”.Biotechnol. Bioengng 10, 707–723.

    Article  Google Scholar 

  • Aris, R. and A. E. Humphrey. 1977. “Dynamics of a Chemostat in which Two Organisms Compete for a Common Substrate”.Biotechnol. Bioengng 10, 1375–1386.

    Article  Google Scholar 

  • Beddington, J. R. 1975. “Mutual Interference Between Parasites of Predators and Its Effect on Searching Efficiency.”J. Anim. Ecol. 44, 331–340.

    Article  Google Scholar 

  • Boon, B. and H. Landelout. 1962. “Kinetics of Nitrite Oxidation by Nitrobacter Winogradski.”Biochem. J. 85, 440–447.

    Google Scholar 

  • Bush, A. W. and A. E. Cook. 1976. “The Effect of Time Delay and Growth Rate Inhibition in the Bacterial Treatment of Wastewater.”J. theor. Biol. 63, 385–395.

    Article  Google Scholar 

  • Butler, G. J., H. I. Freedman and P. E. Waltman. 1986. “Uniformly Persistent Systems.”Proc. Am. math. Soc. 96, 425–430.

    Article  MATH  MathSciNet  Google Scholar 

  • Erbe, L. H. and H. I. Freedman. 1985. “Modeling Persistence and Mutual Interference among Subpopulations of Ecological Communities.”Bull. math. Biol. 47, 295–304.

    Article  MATH  MathSciNet  Google Scholar 

  • Freedman, H. I. 1976. “Graphical Stability, Enrichment, and Pest Control by a Natural Enemy.”Mathl Biosci. 31, 207–225.

    Article  MATH  Google Scholar 

  • —. 1979. “Stability Analysis of a Predator-Prey System with Mutual Interference and Density-dependent Death Rates.”Bull. math. Biol. 41, 167–178.

    Article  Google Scholar 

  • —. 1980.Deterministic Mathematical Models in Population Ecology. New York: Marcel Dekker.

    Google Scholar 

  • — and V. S. H. Rao. 1983. “The Trade-off Between Mutual Interference and Time Lags in Predator-Prey Systems.”Bull. math. Biol. 45, 991–1004.

    MATH  MathSciNet  Google Scholar 

  • Gilpin, M. E. 1972. “Enriched Predator-Prey Systems: Theoretical Stability.”Science 177, 902–904.

    Google Scholar 

  • Hassell, M. P. 1971. “Mutual Interference between Searching Insect Parasites.”J. Anim. Ecol. 40, 473–486.

    Article  Google Scholar 

  • Holling, C. S. 1965. “The Functional Response of Predators to Prey Density and its Role in Mimicry and Population Regulation.”Mem. ent. Soc. Can. 45, 3–60.

    Google Scholar 

  • Holmes, J. C. and W. M. Bethel. 1972. “Modification of Intermediate Host Behaviour by Parasites.”Zool. J. Linn. Soc., Suppl. 1 51, 123–149.

    Google Scholar 

  • Huffaker, C. B., K. P. Shea, S. G. Herman. 1963. “Experimental Studies on Predator: Complex Dispersion and Levels of Food in an Acarine Predator-Prey Interaction.”Hilgardia 34, 305–329.

    Google Scholar 

  • Luckinbill, L. S. 1973. “Coexistence in Laboratory Populations ofParamecium Aurelia and Its PredatorDidinium Nasutum.”Ecology 54, 1320–1327.

    Article  Google Scholar 

  • McAllister, C. D., R. J. Lebrasseur and T. R. Parsons. 1972. “Stability of Enriched Aquatic Ecosystems.”Science 175, 562–564.

    Google Scholar 

  • May, R. M. 1972. “Limit Cycles in Predator-Prey Communities.”Science 177, 900–902.

    Google Scholar 

  • Riebesell, J. F. 1974. “Paradox of Enrichment in Competitive Systems.”Ecology 55, 183–187.

    Article  Google Scholar 

  • Rogers, D. J. and M. P. Hassell. 1974. “General Models for Insect Parasite and Predator Searching Behaviour: Interference.”J. Anim. Ecol. 43, 239–253.

    Article  Google Scholar 

  • Rosenzweig, M. L. 1971. “Raradox of Enrichment: Destabilization of Exploitation Ecosystems in Ecological Time.”Science 171, 385–387.

    Google Scholar 

  • —. 1972a. “Reply to McAllisteret al.Science 175, 564–565.

    Google Scholar 

  • —. 1972b. “Reply to Gilpin.”Science 177, 904.

    Google Scholar 

  • — and W. M. Schaffer. 1978. “Homage to the Red Queen II. Coevolutionary Response to Enrichment of Exploitation Ecosystems.”Theor. Pop. Biol. 14, 158–163.

    Article  MATH  MathSciNet  Google Scholar 

  • Schaffer, W. M. and M. L. Rosenzweig. 1978. “Homage to the Red Queen I. Coevolution of Predators and their Victims.”Theor. Pop. Biol. 14 135–157.

    Article  MATH  MathSciNet  Google Scholar 

  • Tener, J. S. 1965.Muskoxen. Ottawa: Queen's Printer.

    Google Scholar 

  • Yang, R. D. and A. E. Humphrey. 1975. “Dynamics and Steady State Studies of Phenol Biodegeneration in Pure and Mixed Cultures.”Biotechnol. Bioengng 17, 1211–1235.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Research partially supported by the Natural Sciences and Engineering Research Council of Canada, Grant No. NSERC A 4823.

Research partially supported by a Natural Sciences and Engineering Research Council of Canada postdoctoral fellowship.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freedman, H.I., Wolkowicz, G.S.K. Predator-prey systems with group defence: The paradox of enrichment revisited. Bltn Mathcal Biology 48, 493–508 (1986). https://doi.org/10.1007/BF02462320

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02462320

Keywords

Navigation