Bulletin of Mathematical Biology

, Volume 38, Issue 4, pp 325–350 | Cite as

Bifurcation analysis of reaction-diffusion equations—III. Chemical oscillations

  • J. F. G. Auchmuty
  • G. Nicolis


Periodic Solution Wave Solution Hopf Bifurcation Bifurcation Point Travel Wave Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amundsen, N. R., 1974. “Nonlinear Problems in Chemical Reactor Theory”.SIAM-AMS Proc. Vol.,VIII, 59–84.MathSciNetGoogle Scholar
  2. Andronov, A. A., A. A. Vitt and C. E. Chaikin. 1966. “Theory of Oscillators”. Oxford: Pergamon Press.MATHGoogle Scholar
  3. Auchmuty, J. F. G. and G. Nicolis. 1975. “Bifurcation Analysis of Reaction-Diffusion Equations—I”.Bull. Math. Biol.,37, 323–365.MATHMathSciNetCrossRefGoogle Scholar
  4. Auchmuty, J. F. G. and G. Nicolis. 1975b. “Time-periodic and Wave-like Solutions of Reaction-Diffusion Equations”, submitted for publication.Google Scholar
  5. Balsev, I. and H. Degn. 1974.Proc. 9th Faraday Symp., London.Google Scholar
  6. Boa, J. (1974). Ph.D. Dissertation, California Inst. of Technology, Pasadena.Google Scholar
  7. Erneux, T. and M. Herschkowitz-Kaufman. 1975. “Dissipative structures in two dimensions”.Biophys. Chem. 3, 345–354.CrossRefGoogle Scholar
  8. Faraday Division of the Chemical Society. 1975.Proceedings, Symposium on Physical Chemistry of Oscillatory Phenomena, London.Google Scholar
  9. Fife, P. 1975. “Branching Phenomena in Fluid Dynamics and Chemical Reaction Diffusion Theory”.CIME Lecture Notes. Cremonese, ed. Roma.Google Scholar
  10. Glansdorff, P. and I. Prigogine. 1971. “Thermodynamics of Structure, Stability and Fluctuations”. New York: Wiley-Interscience.Google Scholar
  11. Herschkowitz-Kaufman, M. 1975. “Bifurcation Analysis of Reaction-Diffusion Equations—II”.Bull. Math. Biol.,37, 589–636.MATHMathSciNetCrossRefGoogle Scholar
  12. Hopf, E. 1942. “Abzweigung einer periodischen Losung von einer Stationaren Losung eines Differentialsystems”.Berichten der Math. Phys. Akademie der Wissenschaften zu Leipzig XCIV., pp. 1–22.Google Scholar
  13. Howard, L. N. (1975). “Bifurcations in Reaction-Diffusion Problems”.Adv. Math.,16, 246–258.MATHMathSciNetCrossRefGoogle Scholar
  14. Iooss, G. 1972. “Existence et Stabilité de la Solution Periodique Secondaire intervenant dans les problèmes d'Evolution du Type Navier-Stokes”.Archs Rat. Mech. Anal.,44, 301–329.MathSciNetCrossRefGoogle Scholar
  15. Joseph, D. D. and D. H. Sattinger. 1972. “Bifurcating Time-Periodic Solutions and their Stability”.Archs Rat. Mech. Anal.,45, 75–109.MathSciNetGoogle Scholar
  16. Keller, H. B. 1974. “Tubular Chemical Reactors with Recycle”.SIAM-AMS Proc. Vol. VIII, 59–84.Google Scholar
  17. Kopell, N. and L. N. Howard. 1973. “Plane Wave Solutions to Reaction-Diffusion Equations”.Stud. Appl. Math. Vol. LII, 291–328.MathSciNetGoogle Scholar
  18. Kuramoto and Tzusuki. 1975. Preprint, Univ. of Kyushu.Google Scholar
  19. Lavenda, B., G. Nicolis and M. Herschkowitz-Kaufman. 1971. “Chemical Instabilities and Relaxation Oscillations”.J. Theor. Biol.,32, 283–292.CrossRefGoogle Scholar
  20. Lefever, R. 1970. Thèse de Doctorat, Chimie Physique, Université Libre de Bruxelles.Google Scholar
  21. — and I. Prigogine. 1968. “Symmetry-Breaking Instabilities in Dissipative Systems—II”.J. Chem. Phys.,48, 1695–1700.CrossRefGoogle Scholar
  22. — and G. Nicolis. 1971. “Chemical Instabilities and Sustained Oscillations”.J. Theor. Biol.,30, 267–284.CrossRefGoogle Scholar
  23. Mahar, T. J. and B. J. Matkowsky. 1975. “A Model Biochemical Reaction Exhibiting Secondary Bifurcation”.SIAM J. Appl. Math., to appear.Google Scholar
  24. Marsden, J. and M. McCracken. 1975. “The Hopf Bifurcation and its Applications”.Springer Lectures in Appl. Math. Google Scholar
  25. Nicolis, G. and M. Herschkowitz-Kaufman. 1972. “Localized Spatial Structure and Nonlinear Chemical Waves in Dissipative Systems”.J. Chem. Phys.,56, 1890–1895.CrossRefGoogle Scholar
  26. Ortoleva, P. and J. Ross. 1973. “Phase Waves in Oscillatory Chemical Reactions”.J. Chem. Phys.,58, 5673–5680.CrossRefGoogle Scholar
  27. — and —. 1974. “On a Variety of Wave Phenomena in Chemical Reactions”.J. Chem. Phys.,60, 5090–5107.CrossRefGoogle Scholar
  28. Stanshine, J. 1975. Ph.D. Dissertion, M.I.T.Google Scholar
  29. Turing, A. 1952. “The Chemical Basis of Morphogenesis”.Phil. Trans. R. Soc., Lond.,B237, 37–72.Google Scholar
  30. Turner, J. W., 1974. “Asymptotic Behavior of Nonlinear Oscillations in a Chemical System”.Trans. N.Y. Acad. Sci.,36, 800–806.MATHGoogle Scholar
  31. Winfree, A. T. 1973. “Scroll Waves in an Excitable Three-dimensional Medium.” A. Katchalsky Memorial Symposium, Berkeley.Google Scholar
  32. —. 1974. “Rotating Chemical Reactions”.Scientific American,230, No. 6, 82–95.CrossRefGoogle Scholar
  33. Zhaikin, A. N. and A. M. Zhabotinskii. 1970. “Concentration Wave Propagation in Two-dimensional Liquid-phase Self-oscillating System”.Nature,225, 535–537.CrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 1976

Authors and Affiliations

  • J. F. G. Auchmuty
    • 1
  • G. Nicolis
    • 2
  1. 1.Department of MathematicsIndiana UniversityBloomingtonU.S.A.
  2. 2.Faculté des SciencesUniversité Libre de BruxellesBrusselsBelgium

Personalised recommendations