Advertisement

Bulletin of Mathematical Biology

, Volume 59, Issue 2, pp 263–294 | Cite as

On the origin of tiger bush

  • R. Lefever
  • O. Lejeune
Article

Abstract

We propose a model which describes the dynamics of vast classes of terrestrial plant communities growing in arid or semi-arid regions throughout the world. On the basis of this model, we show that the vegetation stripes (tiger bush) formed by these communities result from an interplay between short-range cooperative interactions controlling plant reproduction and long-range self-inhibitory interactions originating from plant competition for environmental resources. Isotropic as well as anisotropic environmental conditions are discussed. We find that vegetation stripes tend to orient themselves in the direction parallel or perpendicular with respect to a direction of anisotropy depending on whether this anisotropy influences the interactions favouring or inhibiting plant reproduction; furthermore, we show that ground curvature is not a necessary condition for the appearance of arcuate vegetation patterns. In agreement within situ observations, we find that the width of vegetated bands increases when environmental conditions get more arid and that patterns formed of stripes oriented parallel to the direction of a slope are static, while patterns which are perpendicular to this direction exhibit an upslope motion.

Keywords

Vegetation Density Unstable Mode Vegetation Pattern Vegetation Distribution Small Wave Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ambouta, K. 1984. Contribution à l'édaphologie de la brousse tigrée de l'Ouest Nigérien. Thèse de Docteur-Ingénieur, Université de Nancy I.Google Scholar
  2. Audry, P. and Ch. Rossetti. 1996. Is the banded pattern merely a structural expression of an instable pioneer vegetation. Communication atSALT Int. Symp: Banded vegetation patterning in arid and semi-arid environment. Ecological processes and consequences for management. Paris, France.Acta Oecologica, to appear.Google Scholar
  3. Beard, J. S. 1967. A study of patterns in some West Australian Health and Mallee communities.Aust. J. Bot. 15, 131–139.CrossRefGoogle Scholar
  4. Bernd, J. 1978. The problem of vegetation stripes in semi-arid Africa.Plant. Res. and Develop. 8, 37–50.Google Scholar
  5. Boaler, S. B. and C. A. H. Hodge. 1962. Vegetation stripes in Somaliland.J. Ecol. 50, 465–474.CrossRefGoogle Scholar
  6. Boaler, S. B. and C. A. H. Hodge. 1964. Observations on vegetation arcs in the northern region, Somali Republic,J. Ecol. 52, 511–544.CrossRefGoogle Scholar
  7. Clayton, W. D. 1966. Vegetation ripples near Gummi, Nigeria.J. Ecol. 54, 415–417.CrossRefGoogle Scholar
  8. Clos-Arceduc, M. 1956. Etude sur photographies aériennes d'une formation végétale sahélienne: la brousse tigrée.Bull. Inst. Afr. noire Sér. A 18, 677–684.Google Scholar
  9. Clos-Arceduc, M. 1964. La géométrie des associations végétales en zone aride.Act. Conf. UNESCO: Explorations aériennes et études intégrées. Toulouse, pp. 419–421.Google Scholar
  10. Cornet, A. F., J. P. Delhoume and C. Montaña. 1988. Dynamics of striped vegetation patterns and water balance in the chihuahuan desert. InDiversity and Pattern in Plant Communities, H. J. During, M. J. A. Werger and J. H. Willems (Eds), pp. 221–231. The Hague: SPB Academic Publishing.Google Scholar
  11. Couteron, P. 1996. Comparison of spatial patterns of woody species in a spotted savanna and a tiger bush of Northern Yatenga (Burkina Faso, West Africa). Communication atSALT Int. Symp.: Banded vegetation patterning in arid and semi-arid environment. Ecological processes and consequences for management. Paris, France.Google Scholar
  12. Cross, M. C. and P. C. Hohenberg. 1993. Pattern formation outside of equilibrium.Rev. Mod. Phys. 65, 851–1112.CrossRefGoogle Scholar
  13. Dunkerley, D. and K. Brown. 1996. Banded vegetation near Broken Hill, Australia: significance of surface roughness and soil physical properties. Communication atSALT Int. Symp.: Banded vegetation patterning in arid and semi-arid environment. Ecological processes and consequences for management. Paris, France.Catena, to appear.Google Scholar
  14. Ehrman, M., S. Galle, J. Seghieri and C. Valentin. 1996. Patterning and pioneer processes of the herbaceous front in a tiger bush. Communication atSALT Int. Symp.: Banded vegetation patterning in arid and semi-arid environment. Ecological processes and consequences for management, Paris, France.Google Scholar
  15. Fife, P. C. 1979.Mathematical Aspects of Reacting and Diffusing Systems. Lecture Notes in Biomathematics, Vol. 28. Berlin/New York: Springer-Verlag.Google Scholar
  16. Galle, S. and J. Seghieri. 1994. Dynamics of soil water content in relation to annual vegetation: the tiger bush in the sahelian Niger.Ann. Geophys. Suppl. II 12, C443.Google Scholar
  17. Gavaud, M. 1966. Etude pédologique du Niger Occidental. Editions de l'ORSTOM de Dakkar-Hann.Google Scholar
  18. Glover, P. E., E. C. Trump and L. E. D. Wateridge. 1964. Termitaria and vegetation patterns on the Loita plains of Kenya.J. Ecol. 52, 367–377.CrossRefGoogle Scholar
  19. Greenwood, J. E. G. W. 1957. The development of vegetation in Somaliland Protectorate.Geogr. J. 123, 465–473.CrossRefGoogle Scholar
  20. Greig-Smith, P. 1979. Pattern in vegetation.J. Ecol. 67, 755–779.CrossRefGoogle Scholar
  21. Grove, A. T. 1957. Patterned ground in Northern Nigeria.Geogr. J. 123, 271–274.Google Scholar
  22. Gunton, J. D., M. San Miguel and P. S. Sahni. 1983. The dynamics of first order transitions. InPhase Transitions and Critical Phenomena, C. Domb and J. L. Lebowitz (Eds), Vol. 8. New York: Academic Press.Google Scholar
  23. Hemming, C. F. 1965. Vegetation arcs in SomalilandJ. Ecol. 53, 57–67.CrossRefGoogle Scholar
  24. Humphreys, G. S., J. Eddy, D. M. Hart, P. B. Mitchell and P. C. Fanning. 1996. Vegetation arcs and litter dams: similarities and differences. Poster atSALT Int. Symp.: Banded vegetation patterning in arid and semi-arid environment. Ecological processes and consequences for management. Paris, France.Catena, to appear.Google Scholar
  25. Ives, R. L. 1946. Desert ripples.Am. J. Sci. 244, 492–501.CrossRefGoogle Scholar
  26. Langer, J. S. 1992. An introduction to the kinetics of first-order phase transitions. InSolids Far from Equilibrium, C. Godrèche (Ed), pp. 297–363. Cambridge, UK: Cambridge University Press.Google Scholar
  27. Levin, S. A. and L. A. Segel. 1985. Pattern generation in space and aspect.SIAM Rev. 27, 45–67.zbMATHMathSciNetCrossRefGoogle Scholar
  28. Litchfield, W. H. and J. A. Mabbutt. 1962. Hardpan in soils of semi-arid Western Australia.J. Soil Sci. 13, 148–159.CrossRefGoogle Scholar
  29. Mabbutt, J. A. and P. C. Fanning. 1987. Vegetation banding in arid Western Australia.J. Arid Env. 12, 41–59.Google Scholar
  30. Macfadyen, W. A. 1950a. Soil and vegetation in British Somaliland.Nature 165, 121.Google Scholar
  31. Macfadyen, W. A. 1950b. Vegetation patterns in the semi-desert plains of British Somaliland.Geogr. J. 116, 199–211.CrossRefGoogle Scholar
  32. Mauchamp, A., S. Rambal and J. Lepart. 1994. Simulating the dynamics of a vegetation mosaic: a spatialized functional model.Ecol. Mod. 71, 107–130.CrossRefGoogle Scholar
  33. Moloney, K. A. 1986. Wave and nonwave regeneration processes in a subalpine Abies balsamea forest.Can. J. Bot. 64, 341–349.Google Scholar
  34. Montaña, C., J. Lopez-Portillo and A. Mauchamp. 1990. The response of two woody species to the conditions created by a shifting ecotone in an arid ecosystem.J. Ecol. 78, 789–798.CrossRefGoogle Scholar
  35. Montaña, C. 1992. The colonization of bare areas in two-phase mosaics of an arid ecosystem.J. Ecol. 80, 315–327.CrossRefGoogle Scholar
  36. Murray, J. D. 1993.Mathematical Biology. Biomathematics Texts, 2nd ed., Vol. 19. Berlin/New York: Springer-Verlag.Google Scholar
  37. Ouedraogo, P. and M. Lepage. 1996. Termite-soil-vegetation interactions in a striped vegetation pattern, Burkina Faso. Communication atSALT Int. Symp.: Banded vegetation patterning in arid and semi-arid environment. Ecological processes and consequences for management. Paris, France.Acta Oecologica, to appear.Google Scholar
  38. Ruxton, B. P. and L. Berry. 1960. The Butana grass patterns.J. Soil Sci. 11, 61–62.CrossRefGoogle Scholar
  39. Schlesinger, W. H., J. F. Reynolds, G. L. Cunningham, L. F. Huenneke, W. M. Jarrell, R. A. Virginia and W. G. Whitford. 1990. Biological feedbacks in global desertification.Science,247, 1043–1048.Google Scholar
  40. Thiéry, J. M., J.-M. d'Herbès and C. Valentin. 1995. A model simulating the genesis of banded vegetation patterns in Niger.J. Ecol. 83, 497–507.CrossRefGoogle Scholar
  41. Tongway, D. J. and J. A. Ludwig. 1990. Vegetation and soil patterning in semi-arid mulga lands of Eastern Australia.Aust. J. Ecol. 15, 23–34.CrossRefGoogle Scholar
  42. Turing, A. M. 1952. The chemical basis of morphogenesis.Phil. Trans. Roy. Soc. Lond., Ser. B 237, 37–72.Google Scholar
  43. Valentin, C. and J.-M. d'Herbès. 1996. The Nigerian tiger bush as natural water harvesting system. Communication atSALT Int. Symp.: Banded vegetation patterning in arid and semi-arid environment. Ecological processes and consequences for management. Paris, France.Catena, to appear.Google Scholar
  44. Van Der Meulen, F. and J. W. Morris. 1979. Striped vegetation patterns in a Transvaal savanna.Geo-Eco-Trop. 3, 253–266.Google Scholar
  45. Vesey-Fitzgerald, D. F. 1957. The vegetation of the Red Sea coast north of Jedda, Saudi Arabia.J. Ecol. 45, 547–562.CrossRefGoogle Scholar
  46. White, L. P. 1969. Vegetation arcs in Jordan.J. Ecol. 57, 461–464.CrossRefGoogle Scholar
  47. White, L. P. 1970.Brousses Tigrées patterns in Southern Niger.J. Ecol. 58, 549–553.CrossRefGoogle Scholar
  48. White, L. P. 1971. Vegetation stripes on sheet wash surfaces.J. Ecol. 59, 615–622.CrossRefGoogle Scholar
  49. Wickens, G. E. and F. W. Collier. 1971. Some vegetation patterns in the Republic of the Sudan.Geoderma 6, 43–59.CrossRefGoogle Scholar
  50. Wilson, J. B. and A. D. Q. Agnew. 1992. Positive feedback switches in plant communities.Adv. Ecol. Res. 23, 263–336.CrossRefGoogle Scholar
  51. Worrall, G. A. 1959. The Butana grass patterns.J. Soil Sci. 10, 34–53.CrossRefGoogle Scholar
  52. Worrall, G. A. 1960a. Patchiness in vegetation in the Northern Sudan.J. Ecol. 48, 107–115.CrossRefGoogle Scholar
  53. Worrall, G. A. 1960b. Tree patterns in the Sudan.J. Soil Sci. 11, 63–67.CrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 1997

Authors and Affiliations

  • R. Lefever
    • 1
  • O. Lejeune
    • 1
  1. 1.Service de Chimie-Physique, CP 231Université Libre de BruxellesBruxellesBelgium

Personalised recommendations