Advertisement

Bulletin of Mathematical Biology

, Volume 59, Issue 2, pp 233–254 | Cite as

Positive feedback and angiogenesis in tumor growth control

  • Seth Michelson
  • John T. Leith
Article

Abstract

In vivo tumor growth data from experiments performed in our laboratory suggest that basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF) are angiogenic signals emerging from an up-regulated genetic message in the proliferating rim of a solid tumor in response to tumor-wide hypoxia. If these signals are generated in response to unfavorable environmental conditions, i.e. a decrease in oxygen tension, then the tumor may play an active role in manipulating its own environment. We have idealized this type of adaptive behavior in our mathematical model via a parameter which represents the carrying capacity of the host for the tumor. If that model parameter is held constant, then environmental control is limited to tumor shape and mitogenic signal processing. However, if we assume that the response of the local stroma to these signals is an increase in the host's ability to support an ever larger tumor, then our models describe a positive feedback control system. In this paper, we generalize our previous results to a model including a carrying capacity which depends on the size of the proliferating compartment in the tumor. Specific functional forms for the carrying capacity are discussed. Stability criteria of the system and steady state conditions for these candidate functions are analyzed. The dynamics needed to generate stable tumor growth, including countervailing negative feedback signals, are discussed in detail with respect to both their mathematical and biological properties.

Keywords

Vascular Endothelial Growth Factor Phase Plane Tumor Growth Control Angiogenic Signal Proliferate Compartment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adam, J. A. and S. A. Megalakis. 1990. Diffusion regulated growth characteristics of the spherical prevascular carcinoma.Bull. Math. Biol. 52, 549–582.MATHGoogle Scholar
  2. Bajzer, Z. and S. Vuk-Pavlovic. 1990. Quantitative aspects of autocrine regulation in tumors.Crit. Rev. Oncogenesis 2, 53–73.Google Scholar
  3. Byrne, H. M. and M. A. J. Chaplain. 1995. Mathematical models for tumour angiogenesis: numerical simulations and nonlinear wave solutions.Bull. Math. Biol. 57, 461–486.MATHGoogle Scholar
  4. Ciampi, A., L. Kates, R. Buick, Y. Kruikov and J. E. Till. 1986. Multi-type Galton-Watson process as a model for proliferating human tumour cell populations derived from stem cells: estimation of the stem cell self-renewal probabilities in human ovarian carcinomas.Cell Tissue Kinet. 19, 129–140.Google Scholar
  5. Day, R. S. 1986. A branching process model for heterogeneous cell populations.Math. Biosci. 78, 73–90.MATHMathSciNetCrossRefGoogle Scholar
  6. Goustin, A. S., E. B. Loef, G. D. Shipley and H. L. Moses. 1986. Growth factors and cancer.Cancer Res. 46, 1015–1029.Google Scholar
  7. Gyllenberg, M. and G. F. Webb. 1989. Quiescence as an explanation of Gompertzian tumor growth. Technical Report MAT-A264, Vanderbilt University.Google Scholar
  8. Heppner, G. H. 1984. Tumor heterogeneity.Cancer Res. 44, 2259–2265.Google Scholar
  9. Kendal, W. S. 1985. Gompertzian growth as a consequence of tumor heterogeneity.Math Biosci. 73, 103–107.MATHMathSciNetCrossRefGoogle Scholar
  10. Keski-Oja, J., A. E. Postlethwaite and H. L. Moses. 1988. Transforming growth factors in the regulation of malignant cell growth and invasion.Cancer Investigations 6, 705–724.Google Scholar
  11. Leith, J. T. and S. Michelson. 1990. Tumor radiocurability: relationship to intrinsic tumor heterogeneity and the tumor bed effect.Inv. Metast. 10, 329–351.Google Scholar
  12. Leith, J. T. and S. Michelson. 1995a. Levels of selected growth factors in viable and necrotic regions of xenografted HCT-8 human colon tumours.Cell Proliferation 28, 279–286.Google Scholar
  13. Leith, J. T. and S. Michelson. 1995b. Secretion rates and levels of vascular endothelial growth factor in clone A or HCT-8 human colon tumor cells as a function of oxygen concentration. Unpublished manuscript.Google Scholar
  14. Leith, J. T., G. Papa, L. Quaranto and S. Michelson. 1992. Modification of the volumetric growth responses and steady state hypoxic fractions of xenografted DLD-2 human colon carcinomas by administration of basic fibroblast growth factor or suramin.Br. J. Cancer 66, 345–348.Google Scholar
  15. Loef, E. B., J. A. Proper, A. S. Goustin, G. D. Shipley, P. E. DiCorleto and H. L. Moses. 1986. Induction of c-sis mRNA and activity similar to platelet-derived growth factor by transforming growth factor beta: a proposed model for indirect mitogenesis involving autocrine activity.Proc. Nat. Acad. Sci. USA 83, 2453–2457.CrossRefGoogle Scholar
  16. Marusic, M. and S. Vuk-Pavlovic. 1993. Prediction power of mathematical models of tumor growth.J. Biol. Syst. 1, 69–78.CrossRefGoogle Scholar
  17. Marusic, M., Z. Bajzer, J. P. Freyer and S. Vuk-Pavlovic. 1991. Modeling autostimulation of growth in multicellular tumor spheroids.Int. J. Biomed. Comput. 29, 149–158.CrossRefGoogle Scholar
  18. Marusic, M., Z. Bajzer, S. Vuk-Pavlovic and J. R. Freyer. 1994. Tumor growth.In vivo and as multicellular spheroids compared by mathematical models.Bull. Math. Biol. 56, 617–632.MATHCrossRefGoogle Scholar
  19. McCarty, L. P., S. Karr, S. Michelson and J. T. Leith. 1995. Comparison of FGF-2 levels in clone A human colon cancer cellsin vitro versus levels in xenografted tumours.Br. J. Cancer 72, 10–16.Google Scholar
  20. Mead, J. E. and N. Fausto. 1989. Transforming growth factor alpha may be a physiological regulator of liver regeneration by means of an autocrine mechanism.Proc. Nat. Acad. Sci. USA 86, 1558–1562.CrossRefGoogle Scholar
  21. Michelson, S. and J. T. Leith. 1991. Autocrine and paracrine growth factors in tumor growth.Bull. Math. Biol. 53, 639–656.Google Scholar
  22. Michelson, S. and J. T. Leith. 1992. Growth factors and growth control of heterogeneous cell populations.Bull. Math. Biol. 55, 993–1011.Google Scholar
  23. Michelson, S. and J. T. Leith. 1994. Dormancy, regression, and recurrence: towards a unifying theory of tumor growth control.J. Theor. Biol. 169, 327–338.CrossRefGoogle Scholar
  24. O'Reilly, M. S., L. Holmgren, Y. Shing, C. Chen, R. A. Rosenthal, M. Moses, W. S. Lane, Y. Chao, E. H. Sage and J. Folkman. 1995. Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma.Cell 79, 315–328.CrossRefGoogle Scholar
  25. Piantadosi, S. 1985. A model of tumor growth with first-order birth and death rates.Comp. Biomed. Res. 18, 220–232.CrossRefGoogle Scholar
  26. Roberts, A. B., M. A. Anzano, L. M. Wakefield, N. S. Roche, D. F. Stern and M. B. Sporn. 1985. Type beta transforming growth factor: a bifunctional regulator of cellular growth.Proc. Nat. Acad. Sci. USA 82, 119–123.CrossRefGoogle Scholar
  27. Rockwell, S. 1981. Effect of host age on the transplantation, growth, and radiation response of EMT6 tumors.Cancer Res. 41, 527.Google Scholar
  28. Rosen, R. 1978. Feedforwards and global systems failure: a generalized mechanism for senescence.J. Theor. Biol. 74, 579–590.CrossRefGoogle Scholar
  29. Sporn, M. B. and A. B. Roberts. 1985. Autocrine growth factors and cancer.Nature 313, 745–747.CrossRefGoogle Scholar
  30. Sporn, M. B. and G. J. Todaro. 1980. Autocrine secretion and malignant transformation of cells.New Engl. J. Med. 303, 878–880.CrossRefGoogle Scholar
  31. Truco, E. 1965a. Mathematical models for cellular systems: the Von Foerster equation. Part I.Bull. Math. Biophys. 27, 283–303.Google Scholar
  32. Truco, E. 1965b. Mathematical models for cellular systems: the Von Foerster equation. Part II.Bull. Math. Biophys. 27, 449–471.CrossRefGoogle Scholar
  33. Vaidya, P. G., V. G. Vaidya and D. G. Martin. 1991. An application of the nonlinear bifurcation theory to tumor growth modeling.Int. J. Biomed. Comput. 27, 27–46.MATHCrossRefGoogle Scholar
  34. Von Foerster, H. 1959. Some remarks on changing populations. InThe Kinetics of Cellular Proliferation, F. Stohlman (Ed). Grune and Stratton, New York.Google Scholar
  35. Wette, R., I. N. Katz and E. Y. Rodin, 1974a. Stochastic processes for solid tumor kinetics I. Surface regulated growth.Math. Biosci. 19, 231–255.MATHCrossRefGoogle Scholar
  36. Watte, R., I. N. Katz and E. Y. Rodin. 1974b. Stochastic processes for solid tumor kinetics II. Diffusion regulated growth.Math. Biosci. 19, 311–338.CrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 1997

Authors and Affiliations

  • Seth Michelson
    • 1
  • John T. Leith
    • 2
  1. 1.Research Support and Information ServicesRoche BiosciencePalo AltoU.S.A.
  2. 2.Radiobiology LaboratoriesBrown UniversityProvidenceU.S.A.

Personalised recommendations