Skip to main content
Log in

Chemotherapeutic treatments: A study of the interplay among drug resistance, toxicity and recuperation from side effects

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

A system of differential equations for the control of tumor growth cells in a cycle nonspecific chemotherapy is analyzed. Spontaneously acquired drug resistance is taken into account, and a criterion for the selection of chemotherapeutic treatment is used. This criterion purports to describe the possibility of improvement of the patient's health when treatment is discontinued. Contrary to our early results which also take drug resistance into account, in this context strategies of continuous chemotherapy in which rest periods take part may be better than maximum drug concentration throughout the treatment (which appears to be in accordance with clinical practice). This bears out our previous conjecture that when drug resistance is accounted for, the imperfections in the usual modelling of treatment criteria, which in general do not allow for patient recuperation, ruled out the possibility of rest periods in optimal continuous chemotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bellomo, N. and G. Forni. 1994. Dynamics of tumor interaction with the host immune system.Math. Comput. Modelling 20, 107–122.

    Article  MATH  Google Scholar 

  • Bernardo Strada, M. R., G. Bernardo and G. Robustelli Della Cuna. 1983. Principi di immunoterapia antitumorale. InManuale de Oncologia Medica, G. Bonadonna (Ed.) Paris: Masson.

    Google Scholar 

  • Clarke, F. H. 1983.Optimization and Nonsmooth Analysis, New York: Wiley.

    MATH  Google Scholar 

  • Coldman, A. J. and J. H. Goldie. 1983. A model for the resistance of tumor cells to cancer chemotherapeutic agents.Math. Biosci. 65, 291–307.

    Article  MATH  Google Scholar 

  • Coldman, A. J. and J. H. Goldie. 1986. A stochastic model for the origin and treatment of tumors containing drug-resistant cells.Bull. Math. Biol. 48, 279–292.

    MATH  MathSciNet  Google Scholar 

  • Costa, M. I. S., J. L. Boldrini and R. C. Bassanezi. 1992. Optimal chemical control of populations developing drug resistance.IMA J. Math. Appl. Med. Biol. 9, 215–226.

    MATH  MathSciNet  Google Scholar 

  • Costa, M. I. S., J. L. Boldrini and R. C. Bassanezi. 1994. Optimal chemotherapy: a case study with drug resistance, saturation effect and toxicity.IMA J. Math. Appl. Med. Biol. 11, 45–59.

    MATH  Google Scholar 

  • Costa, M. I. S., J. L. Boldrini and R. C. Bassanezi. 1995a. Drug kinetics and drug resistance in optimal chemotherapy.Math. Biosci. 125, 191–209.

    Article  MATH  Google Scholar 

  • Costa, M. I. S., J. L. Boldrini and R. C. Bassanezi. 1995b. Chemotherapeutic treatments involving drug resistance and level of normal cells as a criterion of toxicity.Math. Biosci. 125, 211–228

    Article  MATH  Google Scholar 

  • Eisen, M. 1978.Mathematical Models in Cell Biology and Cancer Chemotherapy. Lecture Notes in Biomathematics, Vol. 30. New York: Springer-Verlag.

    Google Scholar 

  • Goldie, J. H. and A. J. Coldman. 1979. A mathematical model for relating the drug sensitivity of tumors to their spontaneous mutation rate.Cancer Treat. Rep. 63, 1727–1733.

    Google Scholar 

  • Harnevo, L. and Z. Agur. 1992. Drug resistance as a dynamic process in a model for multistep gene amplification under various levels of selection stringency.Cancer Chemother. Pharmacol. 30, 469–476.

    Article  Google Scholar 

  • Herson, J. 1980. Evaluation of toxicity: statistical considerations.Cancer Treat. Rep. 64, 463–468.

    Google Scholar 

  • Kimmel, M. and D. E. Axelrod. 1990. Mathematical models for gene amplification with application to cellular drug resistance and tumorigenicity.Genetics 125, 633–644.

    Google Scholar 

  • Kimmel, M., D. E. Axelrod and G. M. Wahl. 1992. A branching process model of gene amplification following chromosome breakage.Mut. Res. 276, 225–239.

    Google Scholar 

  • Kuznetsov, V. A., I. A. Makalin, M. A. Taylor and A. S. Perelson. 1994. Nonlinear dynamics of immunogenic tumors: parameter estimation and global bifurcation analysis.Bull. Math. Biol. 56, 295–321.

    MATH  Google Scholar 

  • Marusic, M., Z. Bajzer, S. Vuk-Pavlovic and J. P. Fryer. 1994. Tumor growthin vivo and as multicellular spheroids compared by mathematical models.Bull. Math. Biol. 56, 617–631.

    Article  MATH  Google Scholar 

  • Mohler, R. R., K. S. Lee, A. L. Asachenkov and G. I. Marchuk. 1994. A system approach to immunology and cancer.IEEE Trans. Syst. Cybernetics 24, 632–641.

    Article  Google Scholar 

  • Murray, J. M. 1990a. Optimal control for a cancer chemotherapy problem with general growth and loss functions.Math. Biosci. 98, 273–287.

    Article  MATH  MathSciNet  Google Scholar 

  • Murray, J. M. 1990b. Some optimal control problems in cancer chemotherapy with a toxicity limit.Math. Biosci. 100, 49–67.

    Article  MATH  MathSciNet  Google Scholar 

  • Murray, J. M. 1995. An example of the effects of drug resistance on the optimal schedule for a single drug in cancer chemotherapy.IMA J. Math. Appl. Med. Biol. 12, 55–71.

    MATH  Google Scholar 

  • Schandl, F. R. 1989. Optimal treatment strategies in cancer chemotherapy. Forschungsbericht Nr. 116, Institut für Ökonometrie, OR und Systemtheorie, Technische Universität Wien.

  • Skipper, H. E. 1983. The forty year old mutation theory of Luria and Delbruck and its pertinence to cancer chemotherapy.Adv. Cancer Res. 40, 331.

    Article  Google Scholar 

  • Swan, G. W. 1987. Tumor growth models and cancer chemotherapy. InCancer Modeling, J. R. Thompson and B. W. Brown (Eds). New York: Dekker.

    Google Scholar 

  • Swan, G. W. 1990. Role of optimal control theory in cancer chemotherapy.Math. Biosci. 101, 237–284.

    Article  MATH  Google Scholar 

  • Swan, G. W. and T. L. Vincent. 1977. Optimal control analysis in the chemotherapy of IgG multiple myeloma.Bull. Math. Biol. 39, 317.

    Article  MATH  Google Scholar 

  • Thornton, B. S. 1988. Prescheduling graphic displays for optimal cancer therapies to reveal possible tumor regression or stabilization.J. Med. Syst. 12, 31–41.

    Article  Google Scholar 

  • Vaidya, V. G. and F. J. Alexandro, Jr. 1982. Evaluation of some mathematical models for tumor growth.Int. J. Bio-Med. Comp. 13, 19–35.

    Article  MathSciNet  Google Scholar 

  • Vendite, L. L. 1988. Modelagem matemática para o crescimento tumoral e o problema de resistência celular aos fármacos anti-bláticos. Ph.D. thesis, Faculdade de Engenharia Elétrica, Universidade Estadual de Campinas, SP, Brazil.

    Google Scholar 

  • Vietti, T. J. 1980. Evaluation of toxicity: clinical issues.Cancer Treat. Rep. 64, 457–461.

    Google Scholar 

  • Zietz, S. and C. Nicolini. 1979. Mathematical approaches to optimization of cancer chemotherapy.Bull. Math. Biol. 41, 305–324.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Costa, M.I.S., Boldrini, J.L. Chemotherapeutic treatments: A study of the interplay among drug resistance, toxicity and recuperation from side effects. Bltn Mathcal Biology 59, 205–232 (1997). https://doi.org/10.1007/BF02462001

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02462001

Keywords

Navigation