Neuroscience and Behavioral Physiology

, Volume 28, Issue 2, pp 107–115 | Cite as

Responses of cortical neurons to microiontophoretic application of acetylcholine to their dendrites

  • Yu. S. Mednikova
  • E. V. Loseva
  • S. V. Karnup
  • M. N. Zhadin


Spike responses of neurons to the microiontophoretic application of acetylcholine to the soma and the dendrites were studied. The somatic and dendritic membranes had virtually equal sensitivity to acetylcholine. Only activatory responses were seen, which were most typical of spontaneously active neurons. Muscarinic activation induced spike responses with equal latent periods and equal intensities on application of acetylcholine to dendrites and the soma. It is suggested that intracellular chemical signaling is involved in the propagation of cholinergic excitation via dendrites.


Latent Period Excitatory Amino Acid Spike Activity Apical Dendrite Basal Dendrite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    É. V. Zeimal' and S. A. Shelkovnikov, Muscarinic Cholinoceptors [in Russian], Nauka, Leningrad (1989).Google Scholar
  2. 2.
    R. I. Kruglikov, Neurochemical Mechanisms of Learning and Memory [in Russian], Nauka, Moscow (1981).Google Scholar
  3. 3.
    V. I. Maiorov, “Mechanisms of formation of the responses of cat motor cortex neurons associated with launching a conditioned reflex consisting of placing the limbs on a support: a hypothesis,” Zh. Vyssh. Nerv. Deyat.,44, No. 6, 963 (1994).Google Scholar
  4. 4.
    Yu. S. Mednikova, “The role of acetylcholine in the regulation of the functional properties of motor cortex neurons,” in: Neurochemical Bases of Learning and Memory [in Russian], Nauka, Moscow (1989), p. 47.Google Scholar
  5. 5.
    Yu. S. Mednikova and S. V. Karnup, “The responses of cortex neurons to local administration of excitatory amino acids to dendrites and the soma,” Neirofiziologiya,1, No. 6, 437 (1993).Google Scholar
  6. 6.
    V. I. Skok, A. A. Selyanko, and V. A. Derkach, Neuronal Cholinoceptors [in Russian], Nauka, Moscow (1987).Google Scholar
  7. 7.
    D. A. Brown, “Slow cholinergic excitation—a mechanism for increasing neuronal excitability,” Trends in Neurosci.,6, No. 8, 302 (1983).CrossRefGoogle Scholar
  8. 8.
    J. T. Coyle, D. L. Price and M. R. DeLond, “Alzheimer's disease: a disorder of cortical cholinergic innervation,” Science,219, No. 4589, 1184 (1983).PubMedGoogle Scholar
  9. 9.
    M. Deschênes and Hu Bin, “Membrane resistance increase induced in thalamic neurons by stimulation of brainstem cholinergic afferents,” Brain Res.,513, No. 2, 339 (1990).PubMedCrossRefGoogle Scholar
  10. 10.
    A. M. Graybiel and M. Devor, “A microelectrophoretic delivery technique for use with horseradish peroxidase,” Brain Res.,68, No. 1, 167 (1974).PubMedCrossRefGoogle Scholar
  11. 11.
    C. R. Houser, G. D. Crawford, P. M. Salvaterra, and J. E. Vaughan, “Immunocytochemical localization of a choline acetyltransferase in rat cerebral cortex: a study of cholinergic neurons and synapses” J. Comp. Neurol.,234, No. 1, 17 (1985).PubMedCrossRefGoogle Scholar
  12. 12.
    K. Krnjević, “Chemical nature of synaptic transmission in vertebrates,” Physiol. Rev.,54, No. 2, 418 (1974).Google Scholar
  13. 13.
    K. Krnjević and J. W. Phillips, “Acetylcholine-sensitive cells in the cerebral cortex,” J. Physiol.,166, No. 2, 296 (1963).PubMedGoogle Scholar
  14. 14.
    K. Krnjević, R. Pumain, and L. Renaud, “The mechanism of excitation by acetylcholine in the cerebral cortex,” J. Physiol.,215, 247 (1971).PubMedGoogle Scholar
  15. 15.
    R. Llinás and M. Sugimori, “Electrophysiological properties ofin vitro Purkinje cell somata in mammalian cerebral slices,” J. Physiol.,305, 171 (1980).PubMedGoogle Scholar
  16. 16.
    R. Llinás and M. Sugimori, “Electrophysiological properties ofin vitro Purkinje cell dendrites in mammalian cerebral slices,” J. Physiol.,305, 197 (1980).PubMedGoogle Scholar
  17. 17.
    A. A. Lucio, van Rooijen and J. Traber, “Muscarinic acetylcholine receptor-linked inositide cycle in the central nervous system,” in: Molecular Mechanisms of Neuronal Responsiveness Y. H. Ehrlich, et al., (eds.), Plenum Press, New York-London (1987), p. 81.Google Scholar
  18. 18.
    M. L. Mayer and G. L. Westbrook, “The physiology of excitatory amino acids in the vertebrate central nervous system,” Prog. Neurobiol.,28, No. 3, 197 (1987).PubMedCrossRefGoogle Scholar
  19. 19.
    D. A. McCormick and D. A. Prince, “Mechanisms of action of acetylcholine in the guinea-pig cerebral cortexin vitro,” J. Physiol.,375, 169 (1986).PubMedGoogle Scholar
  20. 20.
    Y. S. Mednikova and S. V. Karnup, “Functional geometry of amino acid sensitive membrane of layer V neurons in the guinea-pig neocortexin vitro,” Neurosci.,69, No. 1, 115 (1995).CrossRefGoogle Scholar
  21. 21.
    M. M. Mesulam, “The blue reaction product in horseradish peroxidase neurohistochemistry: incubation parameters and visibility,” J. Histochem. Cytochem.,24, No. 12, 1273 (1976).PubMedGoogle Scholar
  22. 22.
    L. Mrzljak, M. Pappy, C. Leranth, and P. S. Goldman-Rakic, “Cholinergic synaptic circuitry in the macaque prefrontal cortex,” J. Comp. Neurol.,357, No. 4, 603 (1995).PubMedCrossRefGoogle Scholar
  23. 23.
    W. Rall, R. E. Burke, W. R. Holmes, et al., “Matching dendritic neuron models to experimental data,” Physiol. Rev.,72, No. 4 (Suppl.), 159 (1992).Google Scholar
  24. 24.
    F. F. Weight, J. A. Schulman, P. A. Smith, and N. A. Busis, “Long-lasting potentials and the modulation of synaptic transmission,” Fed. Proc.,38, No. 7, 2084 (1979).PubMedGoogle Scholar
  25. 25.
    W. Zieglgansberger and E. A. Puil, “Actions of glutamic acid on spinal neurons,” Exp. Brain Res.,17, No. 1, 35 (1973).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • Yu. S. Mednikova
  • E. V. Loseva
  • S. V. Karnup
  • M. N. Zhadin

There are no affiliations available

Personalised recommendations