Skip to main content
Log in

Causal reasoning as a base for advancing a systemic approach to simple electrical circuits

  • Published:
Research in Science Education Aims and scope Submit manuscript

Abstract

This paper focuses on the use of research results on students' causal reasoning in designing the teaching of electricity. Examination of students' replies in written questions and classroom teacher-lead discussions suggests that several students, when they construct microscopic mechanisms to explain electrical phenomena, may envision transient states and employ a specific type of causal chain, the iterative one, in addition to the simple and linear causal reasoning. In the second part of paper we present and discuss features of a microscopic mechanism adapted to students' causal reasoning patterns which relies on qualitative modelling of transient states of electrical circuit operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersson, B. (1986). The experimental gestalt of causation: A common core to pupil's preconceptions in science.European Journal of Science Education, 8(2), 155–171.

    Google Scholar 

  • Barbas, A., & Psillos, D. (1993). Designing a computer-based course on basic electricity for prospective primary school teachers. In P. L. Lijnse (Ed.),European Research in Science Education. Proceedings of the first PhD Summerschool (pp. 215–223). Utrecht: Cd-ß Press.

    Google Scholar 

  • Barbas, A., Koumaras, P., & Psillos, D. (1995, April).A causal approach for relating equilibrium to change in electrical circuits. Paper presented at the European Conference on Research in Science Education, Leeds, UK.

  • Chabay, R. W., & Sherwood, B. A. (1995).Electric and magnetic interactions. New York: John Wiley.

    Google Scholar 

  • Cheng, P., & Holyoak, K. (1985). Pragmatic reasoning schemas.Cognitive Psychology, 17, 391–416.

    Article  Google Scholar 

  • diSessa, A. (1979). On “learnable” representations of knowledge: A meaning for the computational metaphor. In J. Lochhead & J. Clement (Eds),Cognitive process instruction (pp. 239–266). Philadelphia, Pennsylvania: The Franklin Institute Press.

    Google Scholar 

  • Driver, R., Squires, A., Rushworth, P., & Wood-Robinson, V. (Eds.). (1994).Making sense of secondary science. London: Routledge.

    Google Scholar 

  • Eylon, B.-S., & Ganiel, U. (1990). Macro-micro relationships: The missing link between electrostatics and electrodynamics in students' reasoning.International Journal of Science Education, 12(1), 79–94.

    Google Scholar 

  • Frederiksen, J. R., White, B. Y. (1992). Mental models and understanding: A problem for science education. In E. Scanlon, & T. O'Shea (Eds),New directions in educational technology (pp. 211–226). (NATO ASI Series F: Computer and Systems Sciences, Vol. 96). Berlin, Heidelberg: Springer-Verlag.

    Google Scholar 

  • Gutierrez, R., & Ogborn, J. (1992). A causal framework for analysing alternative conceptions.International Journal of Science Education, 14(2), 201–220.

    Google Scholar 

  • Gutwill, J., Frederiksen, J., & Ranney, M. (1996). Seeking the causal connection in electricity: Shifting among mechanistic perspectives.International Journal of Science Education, 18(2), 143–162.

    Google Scholar 

  • Halbwachs, F. (1971a). Réflexions sur la causalité physique [Reflections on causality in physics]. In M. Bunge, F. Halbwachs, T. S. Kuhn, J. Piaget, & L. Rosenfeld (Eds.),Les théories de la causalité (pp. 19–38). Paris: Presses Universitaires de France.

    Google Scholar 

  • Halbwachs, F. (1971b). Causalité linéaire et causalité circulaire en physique [Linear causality and circular causality in physics]. In M. Bunge, F. Halbwachs, T. S. Kuhn, J. Piaget, & L. Rosenfeld (Eds.),Les théories de la causalité (pp. 39–111). Paris: Presses Universitaires de France.

    Google Scholar 

  • Koumaras, P., Kariotoglou, P., & Psillos, D. (1997). Causal structures and counter-intuitive experiments in electricity.International Journal of Science Education, 19(6), 617–630.

    Google Scholar 

  • Kuhn, T. S. (1970).The structure of scientific revolutions. Chicago: Chicago University Press.

    Google Scholar 

  • Lijnse, P. L. (1995). Trends in European research. In D. Psillos (Ed.),Proceedings of the second PhD Summerschool on European Research in Science Education (pp. 15–25). Thessaloniki: Art of Text.

    Google Scholar 

  • Lijnse, P. L., Licht, P., De Vos, W., & Waarlo, A. J. (Eds.). (1990).Relating macroscopic phenomena to microscopic particles. Utrecht: CD-ß Press.

    Google Scholar 

  • Meheut, M. (1997). Designing a learning sequence about a prequantitative kinetic model of gases: The parts played by questions and by a computer-simulation.International Journal of Science Education, 19(6), 647–660.

    Google Scholar 

  • Psillos, D. (1995). Adapting instruction to students' reasoning. In D. Psillos (Ed.),Proceedings of the second PhD Summerschool on European Research in Science Education (pp. 57–71). Thessaloniki: Art of Text.

    Google Scholar 

  • Psillos, D. (in press). Teaching introductory electricity. In A. Tiberghien & B. Jossm (Eds.),Research and teacher education. International Commission for the Physics Education.

  • Psillos, D., & Barbas, A. (1995, March).Critical analysis of a science textbook as a framework for developing pedagogical content knowledge. Paper presented at the UNESCO workshop Pedagogical Research and Elaboration of Textbooks for Primary Education, Thessaloniki, Greece.

  • Psillos, D., Koumaras, P., & Valassiades, O. (1987). Students' representations of electric current before, during and after instruction on DC circuits.Journal of Research in Science and Technological Education, 5(2), 185–189.

    Google Scholar 

  • Rainson, S., Tranströmer, G., & Viennot L. (1994). Students' understanding of superposition of electric fields.American Journal of Physics, 62(11), 1026–1032.

    Article  Google Scholar 

  • Rozier, S., & Viennot, L. (1991). Students' reasoning in thermodynamics.International Journal of Science Education, 13(2), 159–170.

    Google Scholar 

  • Sherwood, B. A., & Chabay, R. W. (1993). Electrical interactions and the atomic structure of matter: Adding qualitative reasoning to a calculus-based electricity and magnetism course. In M. Caillot (Ed.),Learning electricity and electronics with advanced educational technology (pp. 23–35) (NATO ASI Series F: Computer and Systems Sciences, Vol. 115). Berlin, Heidelberg: Springer-Verlag.

    Google Scholar 

  • Shipstone, D. M., von Rhöneck, C., Jung, W., Kärrqvist, C., Dupin, J. J., Joshua, S., & Licht, P. (1988). A study of students' understanding of electricity in five European countries.International Journal in Science Education, 10(3), 303–316.

    Google Scholar 

  • Steinberg, M. (1987). Transient electrical processes as resources for causal reasoning. In J. D. Novak (Ed.),Proceedings of the Second International Seminar Misconceptions and Educational Strategies in Science & Mathematics (pp. 480–489). Ithaca, NY: Cornell University.

    Google Scholar 

  • Tallant, D. P. (1993). A review of misconceptions of electricity and electrical circuits. In J. D. Novak (Ed.),Proceedings of the Third International Seminar on Misconceptions and Educational Strategies in Science and Mathematics. Ithaca, NY. (http://www2.ucsc.edu.mlrg/proc3abstracts.html)

  • Tiberghien, A. (1994). Modelling as a basis for analysing teaching-learning situations.Learning and Instruction, 4(1), 71–87.

    Article  Google Scholar 

  • Viennot, L. (1996).Raisonner en Physique: Le part du sens commun [Reasoning in Physics: The part of common sense]. Bruxelles: De Boeck Université, Pratiques Pédagogiques.

    Google Scholar 

  • Viennot, L., & Rainson, S. (1992). Students' reasoning about the superposition of electric fields.International Journal of Science Education, 14(4), 475–487.

    Google Scholar 

  • White, B. Y., Frederiksen, J. R., & Spoehr, K. T. (1993). Conceptual models for understanding electrical circuits. In M. Caillot (Ed.),Learning electricity or electronics with advanced educational technology (pp. 77–95). (NATO ASI Series F: Computer and Systems Sciences, Vol. 115). Berlin, Heidelberg: Springer-Verlag.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Psillos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barbas, A., Psillos, D. Causal reasoning as a base for advancing a systemic approach to simple electrical circuits. Research in Science Education 27, 445–459 (1997). https://doi.org/10.1007/BF02461764

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02461764

Keywords

Navigation