Skip to main content
Log in

Learning and teaching: Differentiation and relation

  • Published:
Research in Science Education Aims and scope Submit manuscript

Abstract

In this paper we discuss the articulation between teaching and learning, how to differentiate them and how to establish relations between them, limiting ourselves to aspects dealing with knowledge. The aim is to allow the design of teaching situations more relevant for learning. The characteristics differentiating teaching and learning are used to analyse research studies relative to two time scales, one of the order of months or years and the other of the order of hours. The comparison shows the importance of the grain size chosen to analyse the knowledge involved both in teaching and in learning. On the first scale, the analysis of the students' knowledge and that of the knowledge to be taught are done independently to the extent that students' knowledge is not analysed in reference to the knowledge to be taught (in terms of error or missing aspect) but on the basis of the student's coherency. The decomposition of these two types of knowledge into similar components allows us to compare them and leads us to propose “intermediate notions” between the usual physics knowledge to be taught and the students prior knowledge. These intermediate notions can be rather far from complete correct physics knowledge but are learnable by the students. On the second scale, detailed analysis of a single teaching session and the students' processes during this session needs a fine level of knowledge granularity. Such a level allows us to make hypotheses based on the elements of students' prior knowledge from which they can construct new knowledge and not only on the prior knowledge which has to be modified. This granularity level allows an emphasis on the positive aspects of students' prior knowledge and enables us to construct hypothesis in order to design teaching situations. Making explicit “intermediate notions” in the knowledge to be taught at a rather large level of granularity of knowledge and the positive aspects of students' prior knowledge at a fine level of granularity, are proposed as ways to improve teaching for fruitful learning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adey, P. S., & Shayer, M. (1993). An exploration of long-term far-transfer following an extended intervention programme in the high school science curriculum.Cognition and Instruction, 11(1), 1–29.

    Article  Google Scholar 

  • Andersson, B., & Bach, F. (1996). Developing new teaching sequences in science: The example of “Gases and their properties.” In G. Welford, J. Osborne, & P. Scott (Eds.),Research in Science Education in Europe (pp. 7–21). London: Falmer Press.

    Google Scholar 

  • Arnold, M., & Millar, R. (1994). Children's and lay adults views about thermal equilibrium.International Journal of Science Education, 16(4), 405–419.

    Google Scholar 

  • Arnold, M., & Millar, R. (1996). Exploring the use of analogy in the teaching of heat, temperature and thermal equilibrium. In G. Welford, J. Osborne, & P. Scott (Eds.),Research in Science Education in Europe (pp. 22–35) London: Falmer Press.

    Google Scholar 

  • Brousseau, G. (1981). Problèmes de didactique des décimaux [Problems on the teaching of decimals].Recherches en Didactique des Mathématiques, 2 & 3, 37–127.

    Google Scholar 

  • Bécu-Robinault, K. (1997).Rôle de l'expérience en classe de physique dans l'acquisition des connaissances sur les phénomènes énergétiques [Role of experiment in physics classroom in the knowledge acquisition on energetic phenomena]. Unpublished doctoral thesis, Université Lyon 1, France.

    Google Scholar 

  • Bécu-Robinault, K., & Tiberghien, A. (in press). Integrating stable experiments in energy teaching.International Journal of Science Education.

  • Brown, D., & Clement, J. (1992). Classroom teaching experiments in mechanics. In R. Duit, F. Goldberg, & H. Niedderer (Eds.),Research in physics learning: Theoretical issues and empirical studies. Proceedings of an international workshop (pp. 380–397). Kiel: IPN.

    Google Scholar 

  • Carey, S. (1985).Conceptual change in childhood. Cambridge, MA: MIT Press (Bradford Books).

    Google Scholar 

  • Carey, S., & Spelke, E. (1994). Domain-specific knowledge and conceptual change. In L. A. Hischfeld, & S. A. Gelman (Eds.),Mapping the mind (pp. 169–200). Cambridge: Cambridge University Press.

    Google Scholar 

  • Chevallard, Y. (1991).La transposition didactique [Didactical Transposition] (2nd ed.). Grenoble: La Pensée Sauvage.

    Google Scholar 

  • Collet, G. (1994). Apports linguistiques à l'analyse de la modélisation en physique [Contribution of linguistics in physics modelling],In Actes du premier colloque jeunes chercheurs en sciences cognitives (pp. 231–240). La Motte d'Aveillans (Isère).

  • Collet, G. (1996).Apports linguistiques à l'analyse des mécanismes cognitifs de modélistion en sciences physiques [Contribution of linguistics in the analysis of cognitive mechanism in physics modelling]. Unpublished doctoral thesis, Institut National Polytechnique de Grenoble, Grenoble, France.

    Google Scholar 

  • Duit, R., & von Rhöneck, C. (in press). Learning and understanding key concepts of electricity. In A. Tiberghien, L. Jossem, & J. Barojas (Eds.),Connecting research on physics education with teacher education. International Commission of Physics Education.

  • Dyskstra, D. (1992). Studying conceptual change: Constructing new understadings., In R. Duit, F. Goldberg, & H. Niedderer (Eds),Research in physics learning: Theoretical issues and empirical studies. Proceedings of an international workshop (pp. 40–58). Kiel: IPN.

    Google Scholar 

  • Fisher, H. E. (1997, September).Motivational states of students in a physics classroom: The interference of qualitative and quantitative investigation. Paper presented at the European Science Educational Research Association Conference, Rome, Italy.

  • Gaidioz, P., Monneret, A., & Tiberghien, A. (1997).Enseignement de l'énergie en classe de lère S. Cours et compléments didactiques [Energy teaching in lère S (grade 11), Course and additional didactical aspects]. Lyon: Document COAST-MAFPEN.

    Google Scholar 

  • Giere, R. N. (1988).Explaining science. A cognitive approach. Chicago: The University of Chicago Press.

    Google Scholar 

  • Hischfeld, L. A. & Gelman, S. A. (1994). Towards a topography of mind: An introduction to domain specificity. In L. A. Hischfeld & S. A. Gelman (Eds.)Mapping the mind (pp. 3–35). Cambridge: Cambridge University Press.

    Google Scholar 

  • Horstendahl, M. (1996, August).Conditions and effects of students' motivation and interest in discourse-oriented physics-classes. Paper presented at the 3rd European Summerschool. Theory and Methodology of Research in Science Education, Barcelona, Spain.

  • Laborde, C. (1997). Affronter la complexité des situations d'apprentissage de mathématiques en classe—Défis et tentatives [Facing the complexity of learning situations in classroom of mathematics].Didaskalia, 10, 99–112.

    Google Scholar 

  • Lacroix, D. (1996).Comment évoluent, chez les élèves de CE2, les notions d'ombre et de lumière? [How do students at primary school (Grade 3) develop the notions of shadow and light?] Unpublished doctoral thesis, Université of Grenoble 1, Grenoble, France.

    Google Scholar 

  • Lemeignan, G., & Weil-Barais, A. (1993).Construire des concepts en physique [Constructing concepts in physics]. Paris: Hachette.

    Google Scholar 

  • Millar, R., Le Maréchal, J. F., & Tiberghien, A. (1997, September).A “map” of the varieties of labwork. Paper presented at the European Science Educational Research Association Conference, Rome, Italy.

  • Minstrell, J. (1992). Facets of students' knowledge and relevant instruction. In R. Duit, F. Goldberg, & H. Niedderer (Eds.),Research in physics learning: Theoretical issues and empirical studies. Proceedings of an international workshop (pp. 110–128). Kiel: IPN.

    Google Scholar 

  • Niedderer, H., Goldberg, F., & Duit, R. (1992). Towards learning process studies: A review of the workshop on research in physics learning. In R. Duit, F. Goldberg, & H. Niedderer (Eds),Research in physics learning: Theoretical issues and empirical studies. Proceedings of an International Workshop (pp. 10–28). Kiel: IPN.

    Google Scholar 

  • Ohlsson, S. (1996). Learning to do and learning to understand: A lession and a challenge for cognitive modelling. In P. Reiman & H. Spada (Eds.),Learning in humans and machines (pp. 37–62). Oxford: Pergamon.

    Google Scholar 

  • Scott, P., Asoko, H. M., & Driver, R. (1992). Teaching for conceptual change: A review of strategies. In R. Duit, F. Goldberg, & H. Niedderer (Eds),Research in physics learning: Theoretical issues and empirical studies. Proceedings of an international workshop (pp. 310–329). Kiel: IPN.

    Google Scholar 

  • Séré, M. G. (1997).Midterm rapport. European Project: Labwork in Science Education. Paris.

    Google Scholar 

  • Tiberghien, A. (1989). Learning and teaching at middle school level of concepts and phenomena in physics. The case of temperature. In H. Mandl, E. de Corte, N. Bennett, & H. F. Friedrich (Eds.),Learning and instruction. European research in an international context (pp. 631–648). Oxford: Pergamon Press.

    Google Scholar 

  • Tiberghien, A. (1994). Modelling as a basis for analysing teaching-learning situations.Learning and Instruction, 4(1), 71–87.

    Article  Google Scholar 

  • Tiberghien, A., Arsac, G., & Méheut, M. (1994). Analyse de projects d'enseignement issus de recherches en didactique [Analysis of teaching projects developed from research in physics education]. In G. Arsac, Y. Chevallard, J. L. Martinand, & A. Tiberghien (Eds.),La transposition didactique à l'épreuve (pp. 105–133). Grenoble: La pensée sauvage.

    Google Scholar 

  • Tiberghien, A., & Megalakaki, O. (1995). Contribution to a characterisation of a modelling activity case of a first qualitative approach of energy concept.European Journal of Psychologie of Education, 10(4), 369–383.

    Article  Google Scholar 

  • Tiberghien, A. (1996). Construction of prototypical situations in teaching the concept of energy. In G. Welford, J. Oxborne, & P. Scott (Eds.),Research in science education in Europe (p. 100–114). London: Falmer Press.

    Google Scholar 

  • Tiberghien, A., & de Vries, E. (1997). Relating characteristics of teaching situations to learner activities.Journal of Computer Assisted Learning, 13, 163–174.

    Article  Google Scholar 

  • Vosniadou, S., & Brewer, W. F. (1994). Mental models of the day-night cycle.Cognitive Science, 18(1), 123–183.

    Article  Google Scholar 

  • Welford, J., Osborne, J. R., & Scott, P. (Eds.) (1996).Research in science education in Europe. London: Falmer Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrée Tiberghien.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tiberghien, A. Learning and teaching: Differentiation and relation. Research in Science Education 27, 359–382 (1997). https://doi.org/10.1007/BF02461759

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02461759

Keywords

Navigation