Bulletin of Mathematical Biology

, Volume 40, Issue 3, pp 359–368 | Cite as

Analytical solution to isometric mechanogram of hill’s model of striated muscle



The two-element muscle model considered consists of a contractile element defined by a hyperbolic force-velocity relation connected in series with an “exponential spring”. Differential equations for the isometrically developed force during a tetanic contraction and the corresponding contractile element shortening velocity are derived and their stability is investigated. Analytical solutions to both equations are obtained. Two numerical examples are given, the second chosen to illustrate pressure-induced hypertrophy of a cardiac muscle.


Cardiac Muscle Muscle Length Contractile Element Feedback Function Tetanic Contraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbott, B. C. and D. R. Wilkie. 1953. “The Relation Between Velocity of Shortening and the Tension-Length Curve of Skeletal Muscle.”J. Physiol., Lond. 120, 214–223.Google Scholar
  2. Bahler, A. S., F. Epstein and E. H. Sonnenblick. 1974. “Series Elasticity ofin vitro Mammalian Cardiac Muscle.”Am. J. Physiol.,227, 794–800.Google Scholar
  3. Brady, A. J. 1965. “Time and Displacement Dependence of Cardiac Contractility: Problems in Defining the Active State and Force-Velocity Relations.”Fedn. Proc.,24, 1410–1420.Google Scholar
  4. Briden, K. L. and N. R. Alpert. 1972. “The Effect of Shortening on the Time-Course of Active State Decay.”J. Gen. Physiol.,60, 202–220.Google Scholar
  5. Brutsaert, D. L. and E. H. Sonnenblick. 1971. “Nature of the Force-Velocity Relation in Heart Muscle.”Cardiovascular Res. Suppl.,1, 18–33.CrossRefGoogle Scholar
  6. Donders, J. J. H. and J. E. W. Beneken. 1971. “Computer Model of Cardiac Muscle Mechanics.”Cardiovascular Res., Suppl.,1, 34–50.Google Scholar
  7. Edman, K. A. P. and E. Nilsson. 1972. “Relationships Between Force and Velocity of Shortening in Rabbit Papillary Muscle.”Acta Physiol. Scand.,85, 488–500.CrossRefGoogle Scholar
  8. Fenn, W. O. and B. S. Marsh. 1935. “Muscular Force at Different Speeds of Shortening.”J. Physiol., Lond.,85, 277–297.Google Scholar
  9. Fick, A. 1892. “Neue Beiträge zur Kenntniss von der Wärmeentwicklung im Muskel.”Pflügers Arch.,51, 541–569.CrossRefGoogle Scholar
  10. Grood, E. S. 1973. “Heart Muscle and the Left Ventricle: a Dynamic Model.” Ph.D. dissertation, Faculty of Graduate School of the State University of New York at Buffalo.Google Scholar
  11. Hill, A. V. 1938. “The Heat of Shortening and the Dynamic Constants of Muscle.”Proc. R. Soc. Lond.,B126, 136–195.CrossRefGoogle Scholar
  12. Jacob, R., A. Kämmereit, I. Medugorac and M. F. Wendt-Gallitelli. 1976. “Maximalgeschwindigkeit der lastfreien Verkürzung (V max), myokardiale Leistungsfähigkeit und Kontraktilitätsindizes beim hypertrophierten Myokard.”Z. Kardiologie,65, 392–400.Google Scholar
  13. Jewell, B. R. and D. R. Wilkie. 1958. “An Analysis of the Mechanical Components in Frog’s Striated Muscle.”J. Physiol., Lond.,143, 515–540.Google Scholar
  14. Matsumoto, Y. 1967. “Validity of the Force-Velocity Relation for Muscle Contraction in the Length Region,ll oJ. Gen. Physiol.,50, 1125–1137.CrossRefGoogle Scholar
  15. McLaughlin, R. J. and E. H. Sonnenblick. 1974. “Time Behaviour of Series Elasticity in Cardiac Muscle: Real-Time Measurement by Controlled-Length Techniques.”Circ. Res.,34, 798–811.Google Scholar
  16. Noble, M. I. M., T. E. Brown and L. L. Hefner. 1969. “Force-Velocity Relationship of Cat Cardiac Muscle, Studied by Isotonic and Quick-Release Techniques.”Circ. Res.,24, 821–833.Google Scholar
  17. Noble, M. I. M. and W. Else. 1972. “Re-Examination of the Applicability of the Hill Model of Muscle to Cat Myocardium.”Circ. Res.,31, 580–589.Google Scholar
  18. Pollack, G. H., L. L. Huntsman and P. Verdougo. 1972. “Cardiac Muscle Models: an Overextension or Series Elasticity?”Circ. Res.,31, 369–579.Google Scholar
  19. Ritchie, J. M. and D. R. Wilkie. 1958. “The Dynamics of Muscular Contraction.”J. Physiol., Lond.,143, 104–113.Google Scholar
  20. Sonnenblick, E. H. 1964. “Series Elastic and Contractile Elements in Heart Muscle: Changes in Muscle Length.”Am. J. Physiol.,207, 1330–1338.Google Scholar
  21. Yeatman, L. A., W. W. Parmley and E. H. Sonnenblick 1969. “Effects of Temperature on Series Elasticity and Contractile Element Motion in Heart Muscle.”Am. J. Physiol.,217, 1030–1034.Google Scholar

Copyright information

© Society for Mathematical Biology 1978

Authors and Affiliations

  • K. Vit
    • 1
  1. 1.Department of Electrical EngineeringUniversity of SalfordSalfordEngland

Personalised recommendations