Skip to main content
Log in

Understanding why things happen: Case-studies of pupils using an abstract picture language to represent the nature of changes

Research in Science Education Aims and scope Submit manuscript

Cite this article

Abstract

This research is concerned with investigating children’s understanding of physical, chemical and biological changes while using an approach developed by the projectEnergy and Change. This project aimed to provide novel ways of teaching about the nature and direction of changes, in particular introducing ideas related to the Second Law of Thermodynamics in a way accessible to pupils aged 11 upwards. To accomplish this, the project developed an abstract picture language through which the scientific story is told. An intensive study of the learning of a number of different groups of pupils was undertaken, based on records of their written work, observational notes of lessons, and small group interviews. This paper follows the progress of three pairs of 12-year-old pupils over a period of eight months studying a variety of topics, drawing on the written assignments and tests they did, as well as on the observational records. The abstract picture language and the teaching approach aim to provide a coherent and systematic account of the fundamental nature of all changes. The analysis reveals some of the issues which are involved in understanding the nature and causes of change and how this understanding can be fostered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  • Boohan, R. (1996a).Energy and change: Support materials. London: Institute of Education, University of London.

    Google Scholar 

  • Boohan, R. (1996b). Using a picture language to teach about processes of change. In G. Welford, J. Osborne, & P. Scott (Eds.), (1996).Research in science education in Europe (pp. 85–89). London: The Falmer Press.

    Google Scholar 

  • Boohan, R., & Ogborn, J. (1996).Energy and change. A set of three booklets. Hatfield, England: Association for Science Education.

    Google Scholar 

  • Briggs, H., & Holding, B. (1986).Aspects of secondary students’ understanding of elementary ideas in chemistry. CLISP Report. Leeds, UK: Centre for Studies in Science and Mathematics Education, University of Leeds.

    Google Scholar 

  • Brook, A., Briggs, H., Bell, B., & Driver, R. (1984).Aspects of secondary students’ understanding of heat. CLISP Report. Leeds, UK: Centre for Studies in Science and Mathematics Education, University of Leeds.

    Google Scholar 

  • Brook, A., & Driver, R. (1984).Aspects of secondary students’ understanding of energy. CLISP Report. Leeds, UK: Centre for Studies in Science and Mathematics Education, University of Leeds.

    Google Scholar 

  • Driver, R., & Millar, R. (Eds.) (1986).Energy matters. Leeds, UK: Centre for Science and Mathematics Education, University of Leeds.

    Google Scholar 

  • Duit, R. (1981). Understanding energy as a conserved quantity.European Journal of Science Education, 3(3), 291–301.

    Google Scholar 

  • Duit, R., & Kesidou, S. (1988). Students’ understanding of basic ideas of the second law of thermodynamics.Research in Science Education, 18, 186–195.

    Article  Google Scholar 

  • Ellse, M. (1988). Transferring not transforming energy.School Science Review, 69(248), 427–437.

    Google Scholar 

  • Engel Clough, E., & Driver, R. (1985). Secondary students’ conceptions of the conduction of heat: Bringing together scientific and personal views.Physics Education 20(4), 176–182.

    Article  Google Scholar 

  • Erickson, G. L. (1979). Children’s conceptions of heat and temperature.Science Education, 63(2), 221–230.

    Google Scholar 

  • Mak, S., & Young, K. (1987). Misconceptions in the teaching of heat.School Science Review, 68(244), 464–470.

    Google Scholar 

  • Marx, G. (1983).Entropy in the school. Budapest: Roland Eötvös Physical Society.

    Google Scholar 

  • Ogborn, J. (1990). Energy, change, difference and danger.School Science Review, 72(259), 81–85.

    Google Scholar 

  • Prieto, T., Blanco, A., & Rodriguez, A. (1989). The ideas of 11 to 14-year-old students about the nature of solutions.International Journal of Science Education, 11(4), 451–463.

    Google Scholar 

  • Ross, K. A. (1988). Matter scatter and energy anarchy: the second law of thermodynamics is simply common experience.School Science Review, 69(248), 438–445.

    Google Scholar 

  • Ross, K. A. (1993). There is no energy in food and fuels—but they do have fuel value.School Science Review, 75(271), 39–47.

    Google Scholar 

  • Schmid, G. B. (1982). Energy and its carriers.Physics Education, 17(5), 212–218.

    Article  Google Scholar 

  • Schollum, B. W. (1981).Chemical change. Working paper No. 27. Learning in Science Project. Hamilton, NZ: University of Waikato.

    Google Scholar 

  • Solomon, J. (1984). Prompts, cues and discrimination: The utilisation of two separate knowledge systems.European Journal of Science Education, 6(3), 277–284.

    Google Scholar 

  • Solomon, J. (1992).Getting to know about energy in school and society. London: The Falmer Press.

    Google Scholar 

  • Stylianidou, F (1995, April).Teaching about physical, chemical and biological change. Paper presented at the European Conference on Research in Science Educations, University of Leeds, Leeds, UK.

  • Stylianidou, F. (1997a). Children’s learning about energy and processes of change.School Science Review, 78(286), 91–97.

    Google Scholar 

  • Stylianidou, F. (1997b). Learning about energy and processes of changes.Proceedings of the GIREP-ICPE International Conference (1996) on New ways of teaching Physics (pp. 389–392). Slovenia, University of Ljubljana.

    Google Scholar 

  • Summers, M. K. (1983). Teaching heat-an analysis of misconceptions.School Science Review, 64(229), 670–676.

    Google Scholar 

  • Warren, J. (1982). The nature of energy.European Journal of Science Education, 4(3), 295–297.

    Google Scholar 

  • Watts, M. (1983). Some alternative views of energy.Physics Education, 18(5), 213–216.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fani Stylianidou.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Stylianidou, F., Boohan, R. Understanding why things happen: Case-studies of pupils using an abstract picture language to represent the nature of changes. Research in Science Education 28, 447–462 (1998). https://doi.org/10.1007/BF02461509

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02461509

Keywords

Navigation