Skip to main content
Log in

One-way blocks in cardiac tissue: A mechanism for propagation failure in purkinje fibres

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

The concept of a one-way block, arising from a region of depressed tissue, has remained central to theories for cardiac arrhythmias. We show that both the geometry of a depressed region and spatial heterogeneities in depression are key factors for inducing such a block. By using an asymptotic approximation, known as the eikonal equation, to model qualitatively the movement of a depolarization wave-front down a Purkinje fibre bundle, we show how a one-way block in conduction may result from asymmetric constriction in the width of a depressed bundle. We demonstrate that this theory is valid for biologically relevant parameters and simulate a one-way block by numerically solving the eikonal approximation. We consider the case of non-uniform depression, where the planar travelling wave speed is spatially dependent. Here, numerical simulations indicate that such a spatial dependency may, in itself, be sufficient to produce a one-way block.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Literature

  • Allessie, M. A., F. I. M. Bonke and F. J. G. Schopman. 1977. Circus movement in rabbit atrial muscle as a mechanism of tachycardia. III. The ‘leading circle’ concept: a new model of circus movement in cardiac tissue without the involvement of an anatomical obstacle.Circ. Res. 41, 9–18.

    Google Scholar 

  • Ashman, R. and E. Hull. 1995.Essentials of Electrocardiography. New York: Macmillan.

    Google Scholar 

  • Auger, P. M., A. Bardou, A. Coulombe and J. Degonde. 1988. Computer simulation of ventricular fibrillation.Math. Comput. Model. 11, 813–822.

    Article  Google Scholar 

  • Beeler, G. W. and H. Reuter. 1977. Reconstruction of the action potential of ventricular myocardial fibers.J. Physiol. 268, 177–210.

    Google Scholar 

  • Chen, P. S., P. D. Wolf, E. G. Dixon, N. D. Daniely, D. W. Frazier, W. M. Smith and R. E. Ideker. 1988. Mechanism of ventricular vulnerability to single premature stimuli in openchest dogs.Circ. Res. 62, 1191–1209.

    Google Scholar 

  • Clerc, L. 1976. Directional differences of impulse spread in trabecular muscle from mammalian heart.J. Physiol. 255, 335–346.

    Google Scholar 

  • Cranefield, P. F. 1975.The Conduction of the Cardiac Impulse: The Slow Response and Cardiac Arrhythmias, Chaps 2 and 5. New York: Futura.

    Google Scholar 

  • Cranefield, P. F., H. O. Klein and B. F. Hoffman. 1971. Conduction of the cardiac impulse. I. Delay, block, and one-way block in depressed Purkinje fibers.Circ. Res. 28, 199–219.

    Google Scholar 

  • Freygang, W. H. and W. Trautwein. 1970. The structural implications of the linear electrical properties of cardiac Purkinje strands.J. gen. Physiol. 55, 524–547.

    Article  Google Scholar 

  • Gomatam, J. and P. Grindrod. 1987. Three-dimensional waves in excitable reaction-diffusion systems.J. math. Biol. 25, 611–622.

    Article  MATH  MathSciNet  Google Scholar 

  • Grindrod, P., M. A. Lewis and J. D. Murray. 1991. A geometrical approach to wave-type solutions of excitable reaction-diffusion systems.Proc. R. Soc. A (in press).

  • Hunter, P. J., P. A. McNaughton and D. Noble. 1975. Analytical models of propagation in excitable cells.Prog. biophys. Molec. Biol. 30, 99–144.

    Article  Google Scholar 

  • Jack, J. J. B., D. Noble and R. W. Tsien. 1975.Electric Current Flow in Excitable Cells. Oxford: Clarendon Press.

    Google Scholar 

  • Johnson, E. A. and J. R. Sommer. 1967. A strand of cardiac muscle: its ultrastructure and the electrophysiological implications of its geometry.J. Cell Biol. 33, 103–129.

    Article  Google Scholar 

  • Joyner, R. W. 1981. Mechanisms of unidirectional blocks in cardiac tissues.Biophys. J. 35, 113–125.

    Article  Google Scholar 

  • Keener, J. P. 1984. Dynamic patterns in excitable media. InModelling of Patterns in Space and Time, W. Jager and J. D. Murray (eds). Heidelberg: Springer-Verlag.

    Google Scholar 

  • Keener, J. P. 1986. A geometrical theory for spiral waves in excitable media.SIAM J. appl. Math. 46, 1039–1056.

    Article  MATH  MathSciNet  Google Scholar 

  • Keener, J. P. 1987. Causes of propagation failure in excitable media. InTemporal Disorder in Human Oscillatory Systems, L. Rensing, U. an der Heiden and M. C. Mackey (eds), pp. 134–140. Berlin: Springer-Verlag.

    Google Scholar 

  • McAllister, R. E., D. Noble and R. W. Tsien. 1975. Reconstruction of the electrical activity of cardiac Purkinje fibres.J. Physiol. 251, 1–59.

    Google Scholar 

  • Miller, R. N. 1979. A simple model of delay, block and one-way conduction in Purkinje fibers.J. math. Biol. 7, 385–398.

    Article  MATH  MathSciNet  Google Scholar 

  • Mobley, B. A. and E. Page. 1972. The surface area of sheep cardiac Purkinje fibers.J. Physiol. 220, 547–563.

    Google Scholar 

  • Noble, D. 1962. A modification of the Hodgkin-Huxley equations applicable to Purkinje fibre action and pace-maker potentials.J. Physiol. 160, 317–352.

    Google Scholar 

  • Schmitt, F. O. and J. Erlanger. 1928. Directional differences in the conduction of the impulse through heart muscle and their possible relation to extrasystolic and fibrillary contractions.Am. J. Physiol. 87, 326–347.

    Google Scholar 

  • Sommer, J. R. and E. A. Johnson. 1968. Cardiac muscle: a comparative study of Purkinje fibers and ventricular fibers.J. Cell Biol. 36, 497–526.

    Article  Google Scholar 

  • Tyson, J. J. and J. P. Keener. 1987. Spiral waves in a model for the myocardium.Physica D29, 215–222.

    Google Scholar 

  • Weidmann, S. 1952. The electrical constants of Purkinje fibres.J. Physiol. 118, 348–360.

    Google Scholar 

  • Winfree, A. T. 1983. Sudden cardiac death: a problem in topology.Scient. Am. 248 (5), 144–161.

    Article  Google Scholar 

  • Wit, A. L., B. F. Hoffman and P. F. Cranefield. 1972a. Slow conduction and re-entry in the ventricular conducting system. I. Return extrasystole in canine Purkinje fibers.Circ. Res. 30, 1–10.

    Google Scholar 

  • Wit, A. L., P. F. Cranefield and B. F. Hoffman. 1972b. Slow conduction and re-entry in the ventricular conducting system. II. Single and sustained circus movement in networks of canine and bovine Purkinje fibers.Circ. Res. 30, 11–22.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lewis, M.A., Grindrod, P. One-way blocks in cardiac tissue: A mechanism for propagation failure in purkinje fibres. Bltn Mathcal Biology 53, 881–899 (1991). https://doi.org/10.1007/BF02461489

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02461489

Keywords

Navigation