Neuroscience and Behavioral Physiology

, Volume 30, Issue 1, pp 19–25 | Cite as

Intracellular regulation of neuronal nicotinic cholinorceptors

  • S. V. Voitenko
  • A. Yu. Bobryshev
  • V. I. Skok


Experiments on isolated superior cervical ganglia from rats were used to study the effects of substances affecting intracellular second messengers on membrane currents evoked by iontophoretic application of acetylcholine (ACh currents) and on excitatory postsynaptic currents (EPSC) induced by single discharges of preganglionic nerve fibers. These studies showed that the adenylate cyclase activator forskolin, the phosphodiesterase inhibitor isobutylmethylxanthine (IMBX), and the protein kinase C activator phorbol ester decreased the amplitude of the ACh current. Neither IMBX nor phorbol ester had any effect on the amplitude or decay time constant of EPSC, while forskolin increased the amplitude of EPSC without altering its decay time constant. Thapsigargin, which liberates intracellular calcium, not only decreased the amplitude of the ACh current, but also decreased EPSC amplitude without affecting its decay time constant. These results suggest that intracellular signaling via protein kinases A and C may affect neuronal nicotinic cholinoceptors (nAChR) only by altering receptor desensitization and not affecting receptor sensitivity to transmitters released from nerves or the kinetics of receptor ion channels. At the same time, neuronal nAChR are influenced by intracellular calcium, which decreases their ability to be activated by exogenous (perhaps acting via desensitization) and nerve-released acetylcholine without affecting the kinetics of ion channel function.

Key Words

Neuronal nicotinic cholinoceptors intracellular signaling protein kinases desensitization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. I. Skok, A. A. Selyanko, and V. A. Derkach,Neuronal Cholinoceptors [in Russian], Nauka, Moscow (1997).Google Scholar
  2. 2.
    T. M. Turpaev, O. A. Yurchenko, and N. G. Grigor'ev, “Changes in the response to extracellular application of acetylcholine during intracellular perfusion of isolated neurons with biogenic amines,”Dokl. Akad. Nauk SSSR,280, 495–498 (1985).Google Scholar
  3. 3.
    T. M. Turpaev, O. A. Yurchenko, and Sh. Rozha, “Two types of interaction of serotonin and acetylcholine in identified brain neurons from the common snail,”Dokl. Akad. Nauk SSSR,270, 1505–1508 (1983).Google Scholar
  4. 4.
    T. Akasu, Y. Ohta, and K. Koketsu, “Neuropeptides facilitate the desensitizing of nicotinic acetylcholine receptors in frog skeletal muscle endplate,”Brain Res.,290, 342–347 (1984).PubMedCrossRefGoogle Scholar
  5. 5.
    M. Amador and J. A. Dani, “Mechanism for modulation of nicotinic acetylcholine receptors that can influence synaptic transmission,”J. Neurosci.,15, No. 6, 4525–4532 (1995).PubMedGoogle Scholar
  6. 6.
    M. L. Aylwin and M. M. White, “Forskolin acts as a non-competitive inhibitor of nicotinic acetylcholine receptors,”Mol. Pharmacol.,41, 908–913 (1992).PubMedGoogle Scholar
  7. 7.
    M. Bachoo, T. Heppner, J. Fiekers, and C. Polosa, “A role of protein kinase C in long-term potentiation of nicotinic transmission in the superior cervical ganglion of the rat,”Brain Res.,585, 299–302 (1992).PubMedCrossRefGoogle Scholar
  8. 8.
    S. A. Barman and S. R. Ikeda, “Phorbol ester potentiation of canine pulmonary vasoreactivity to histamine,”J. Appl. Physiol.,79, No. 1, 102–106 (1995).PubMedGoogle Scholar
  9. 9.
    P. P. Bertrand and J. J. Galligan, “Signal transduction pathways causing slow synaptic excitation in guinea-pig myenteric AH neurons,”Amer. J. Physiol.: Gastrointest. Liver Physiol.,269, No. 5, G710-G720 (1995).Google Scholar
  10. 10.
    G. E. Billman, “Cellular mechanisms for ventricular fibrillation,”NIPS,7, 254–263 (1992).Google Scholar
  11. 11.
    L. E. Chavez-Noriega and C. F. Stevens, “Increased transmitter release at excitatory synapses produced by direct excitation of adenylate cyclase in rat hippocampal slices,”J. Neurosci.,14, No. 1, 310–317 (1994).PubMedGoogle Scholar
  12. 12.
    N. K. Chemeris, V. N. Kazachenko, A. N. Kislov and A. L. Kurchikov, “Inhibition of acetylcholine responses by intracellular calcium inLimnaea stagnalis neurons,”J. Physiol. (London),323, 1–19 (1982).Google Scholar
  13. 13.
    D. D. Christ and S. Nishi, “Site of adrenaline blockade in the superior cervical ganglion of the rabbit,”J. Physiol. (London),213, 107–117 (1971).Google Scholar
  14. 14.
    D. E. Clapham and E. Neher, “Substance P reduces acetylcholine-induced currents in isolated bovine chromaffin cells,”J. Physiol. (London),347, 255–257 (1984).Google Scholar
  15. 15.
    J. L. Galzi, S. Bertrand, P. L. Corringer, and D. Bertrand, “Identification of calcium-binding sites that regulate potentiation of a neuronal nicotinic acetylcholine receptor,”EMBO J.,15, No. 21, 5824–5832 (1996).PubMedGoogle Scholar
  16. 16.
    L. Gandia, M. L. Vitale, M. Villarova, C. Ramirez-Laverone, A. G. Garcia, and J. M. Trifaro, “Differential effects of forskolin and 1,9-deoxyforskolin on nicotinic receptor-and K+-induced responses in chromaffin cells,”Eur. J. Pharmacol.,329, No. 2-3, 189–199 (1997).PubMedGoogle Scholar
  17. 17.
    A. Glushakov, H. Glushakova, and V. Stock, “Modulation of nicotinic acetylcholine receptor activity in submucous neurons by intracellular messengers,” (in press).Google Scholar
  18. 18.
    G. Hernandez, S. P. H. Alexander, and D. A. Kendall, “Forskolin and 3-isobutyl-1-methylxanthine increase basal and sodium nitroprusside-elevated cyclic GMP levels in adult guinea-pig cerebellar slices,”J. Neurochem.,62, No. 6, 2212–2218 (1994).PubMedCrossRefGoogle Scholar
  19. 19.
    R. L. Huganir, “Regulation of the nicotinic acetylcholine receptor by protein phosphorylation,”J. Receptor Res.,7, 241–256 (1987).Google Scholar
  20. 20.
    R. L. Huganir and P. Greengard, “Regulation of receptor function by protein phosphorylation,”Trends Pharmacol. Sci.,8, 472–477 (1987).CrossRefGoogle Scholar
  21. 21.
    L. Khiroug, R. Giniatullin, E. Sokolova, M. Talanova, and A. Nistri, “Imaging of intracellular calcium during desensitization of nicotinic acetylcholine receptors of rat chromaffin cells,”Brit. J. Pharmacol.,122, No. 7, 1323–1332 (1997).CrossRefGoogle Scholar
  22. 22.
    K. Koketsu and M. Yamada, “Presynaptic muscarinic receptors inhibiting active acetylcholine release in the bullfrog sympathetic ganglion,”J. Pharmacol.,77, 75–82 (1982).Google Scholar
  23. 23.
    P. Legendre, C. Rosemund, and W. L. Westbrook, “Inactivation of NMDA channels in cultured hippocampal neurons by intracellular calcium,”J. Neurosci.,13, 674–684 (1993).PubMedGoogle Scholar
  24. 24.
    P. Lorenzon, J. W. Mozrzymas, F. Eusebi, and F. Ruzzier, “Forskolin reduces the activity of the rat muscle embryonic type ACh receptor channel,”Brain Res.,703, 100–104 (1995).PubMedCrossRefGoogle Scholar
  25. 25.
    N. A. Lozovaya, E. A. Vulfius, V. I. Ilyin, and I. V. Krasts, “Kinetics of desensitization of nicotinic acetylcholine receptors depends on intracellular ATP,”J. Physiol. (London),464, 441–455 (1993).Google Scholar
  26. 26.
    T. McGee and B. Liepe, “Acute elevation of cyclic AMP does not alter the ion-conducting properties of the neuronal nicotinic acetylcholine receptor of PC12 cells,”Mol. Pharmacol.,26, 51–56 (1984).PubMedGoogle Scholar
  27. 27.
    T. Nishizaki and Y. Ikeuchi, “Activation of endogenous protein kinase C enhances currents through Alpha1 and Alpha2 glycine recine receptor channels,”Brain Res.,687, 214–215 (1995).PubMedCrossRefGoogle Scholar
  28. 28.
    W. Pashen, J. Doutheil, C. Gissel, and M. Treiman, “Depletion of neuronal endoplasmic reticulum calcium stores by thapsigargin: effects on protein synthesis,”J. Neurochem.,64, No. 4, 1735–1743 (1996).Google Scholar
  29. 29.
    M. Reyes and P. K. Stanton, “Induction of hippocampal long-term depression requires release of Ca2+ from separate presynaptic and postsynaptic intracellular stores,”J. Neurosci.,16, 5951–5960 (1996).PubMedGoogle Scholar
  30. 30.
    L. Role, “Substance P modulation of acetylcholine-induced currents in embryonic chicken sympathetic and ciliary ganglion neurons,”Proc. Natl. Acad. Sci. USA,81, 2924–2928 (1984).PubMedCrossRefGoogle Scholar
  31. 31.
    S. Shenolikar, “Protein phosphorylation: hormones, drugs and bioregulation,”FASEB J.,2, 2753–2764 (1988).PubMedGoogle Scholar
  32. 32.
    H. Sipma, L. Van der Zee, J. Van der Akker, A. den Hertog, and A. Nelemans, “The effect of the PKC inhibitor GF109203X on the release of Ca2+ from internal stores and Ca2+ entry in DDTI MF-2 cells,”Brit. J. Pharmacol.,119, 730–736 (1996).Google Scholar
  33. 33.
    S. Sinnarajah, P. Ezeh, S. Pathirana, L. J. Myers, and V. Vodyanov, “Odorant-sensitive adenylyl cyclase is functionally inhibited by odorant in presence of forskolin,”Abstr. Soc. Neurosci. 26th Annual Meeting, Part 1, Washington (1996).Google Scholar
  34. 34.
    V. I. Skok, A. A. Selyanko, and V. A. Derkach,Neuronal Acetylcholine Receptors, Plenum Press, London (1989).Google Scholar
  35. 35.
    P. M. Smith and H. E. Reed, “Amplification of the thapsigargin-evoked increase in the cytosolic free Ca2+ concentration by acetylcholine in acutely isolated mouse submandibular acinar cells,”Biochem. J.,317, 779–783 (1996).PubMedGoogle Scholar
  36. 36.
    W. B. Stallcup and J. Patrick, “Substance P enhances cholinergic receptor desensitization in a clonal nerve cell line,”Proc. Natl. Acad. Sci. USA,77, 634–638 (1980).PubMedCrossRefGoogle Scholar
  37. 37.
    S. V. Voitenko, S. L. Purnyn, I. A. Omeltchenko, G. G. Dyadyusha, B. S. Zhorov, N. B. Brovtsyna, and V. I. Skok, “Effect of (+)-sparteine in nicotinic acetylcholine receptors in the neurons of rat superior cervical ganglion,”Mol. Pharmacol.,40, No. 2, 180–185 (1991).PubMedGoogle Scholar
  38. 38.
    S. V. Voitenko, A. Yu. Bobryshev, and V. I. Skok, “Effect of fetraethylammonium on nicotinic acetylcholine receptors in rat sympathetic ganglion neurons,”Mol. Neuropharmacol.,3, 153–160 (1993).Google Scholar
  39. 39.
    K. Wagner, K. Edson, I. Heginbotham, M. Post, T. L. Huganier, and A. J. Czernik, “Determination of the tyrosine phosphorylation sites of the nicotinic acetylcholine receptor,”J. Biol. Chem.,266, No. 35, 23784–23789 (1991).PubMedGoogle Scholar
  40. 40.
    M. Windish, A. Baskys, and J. M. Woitowicz, “Synaptic depression induced by hypoxia but not by metabotropic glutamate receptor agonist 1s, 3r-ACPD is enhanced by forskolin,”Abstr. Soc. Neurosci. 26th Annual Meeting, Part 1, 134.15, Washington (1996).Google Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 2000

Authors and Affiliations

  • S. V. Voitenko
  • A. Yu. Bobryshev
  • V. I. Skok
    • 1
  1. 1.A. A. Bogomolets Institute of Physiology, UkrainianNational Academy of SciencesKievUkraine

Personalised recommendations