Skip to main content
Log in

Distribution of different types of calcium channels in the brain structures

  • Lectures
  • Published:
Neurophysiology Aims and scope

Abstract

This study demonstrates that low voltage-activated (LVA) Ca2+ channels and at least five pharmacologically distinct high voltage-activated (HVA) Ca2+ channels exist in most rat CNS neurons, with the exception of cerebellar Purkinje cells. These LVA and HVA Ca2+ channels (including their subtypes) are differentially distributed among various CNS regions. The pharmacological diversity of these channels and their heterogeneous distribution on the nerve cell somata and nerve endings appear relevant in the development of new and region-specific pharmacological agents for clinical use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Ishibashi, J. S. Rhee, and N. Akaike, “Regional difference of high voltage-activated Ca2+ channels in rat CNS neurons,”NeuroReport,6, 1621–1624 (1995).

    PubMed  CAS  Google Scholar 

  2. T. P. Snutch, J. P. Leonard, M. M. Gilbert, et al., “Rat brain expresses a heterogeneous family of calcium channels,”Proc. Natl. Acad. Sci. USA,87, 3391–3395 (1990).

    Article  PubMed  CAS  Google Scholar 

  3. K. Takahashi, M. Wakamori, and N. Akaike, “HippocampalCA1 pyramidal cells of rats have four voltage-dependent calcium conductances,”Neurosci. Lett.,104, 229–234 (1989).

    Article  PubMed  CAS  Google Scholar 

  4. N. Akaike and N. Harata, “Nystatin perforated patch recording and its applications to analyses of intracellular mechanisms,”Jpn. J. Physiol.,44, 433–473 (1994).

    Article  PubMed  CAS  Google Scholar 

  5. F. A. Edwards, A. Konnerth, B. Sakmann, and T. Takahashi, “A thin slice preparation for patch clamp recordings from neurones of the mammalian central nervous system,”Pflügers Arch,414, 600–612 (1989).

    Article  PubMed  CAS  Google Scholar 

  6. I. Llano, A. Marty, C. M. Armstrong, and A. Konnerth, “Synaptic- and agonist-induced excitatory currents of Purkinje cells in rat cerebellar slices,”J. Physiol.,434, 183–213 (1991).

    PubMed  CAS  Google Scholar 

  7. T. Nakagawa, T. Shirasaki, M. Wakamori, et al., “Excitatory amino acid response in isolated nucleus tractus solitarii neurons of the rat,”Neurosci. Res.,8, 114–123 (1990).

    Article  PubMed  CAS  Google Scholar 

  8. N. Akaike, P. G. Kostyuk, and Y. V. Osipchuk, “Dihydropyridine-sensitive low-threshold calcium channels in isolated rat hypothalamic neurones,”J. Physiol,412, 181–195 (1989).

    PubMed  CAS  Google Scholar 

  9. A. Khateb, P. Fort, M. Serafin, et al., “Rhythmical bursts induced by NMDA in guinea-pig cholinergic nucleus basalis neuronsin vitro,”J. Physiol.,487, 623–638 (1995).

    PubMed  CAS  Google Scholar 

  10. J. J. Hablitz and D. Johnston, “Endogeneous nature of spontaneous bursting in hippocampal pyramidal neurons,”Cell Mol. Neurobiol,1, 325–334 (1981).

    Article  PubMed  CAS  Google Scholar 

  11. I. M. Mintz, M. E. Adams, and B. P. Bean, “P-type calcium channels in rat central and peripheral neurons,”Neuron,9, 85–95 (1992).

    Article  PubMed  CAS  Google Scholar 

  12. D. R. Hillyard, V. D. Monje, I. M. Mintz, et al., “A new conus peptide ligand for mammalian presynaptic Ca2+ channels,”Neuron,9, 69–77 (1992).

    Article  PubMed  CAS  Google Scholar 

  13. R. Llinas, M. Sugimori, D. E. Hillman, and B. Cherksey, “Distribution and functional significance of the P-type voltagedependent Ca2+ channels in the mammalian central nervous system,”Trends Neurosci.,15, 351–355 (1992).

    Article  PubMed  CAS  Google Scholar 

  14. G. Vardi, Y. Mori, G. Mikala, and A. Schwarz, “Molecular determinants of Ca2+ channels function and drug action,”Trends Pharmacol. Sci.,16, 43–49 (1995).

    Article  Google Scholar 

  15. J. F. Zhang, A. D. Randall, P. T. Ellinor, et al., “Distinctive pharmacology and kinetics of cloned neuronal Ca2+ channels and their possible counterparts in mammalian CNS neurons,”Neuropharmacology,32, 1075–1088 (1993).

    Article  PubMed  CAS  Google Scholar 

  16. N. Akaike, J. S. Rhee, Y. H. Jin, and K. Ono, “GABA: receptor. transporters and metabolism,” in:Ontogenic Changes of GABA A Function of the Rat Meynert Neuron, C. Tanaka and N. G. Bowery (eds.), Birkhauser Verlag, Basel (1996), pp. 201–207.

    Google Scholar 

  17. D. Murchison and W. H. Griffith, “Low-voltage activated calcium currents increase in basal forebrain neurons from aged rats,”J. Neurophysiol.,74, 876–887 (1995).

    PubMed  CAS  Google Scholar 

  18. D. W. Choi, “Calcium-mediated neurotoxicity: Relationship to specific channel types and role in ischemic damage,”Trends Neurosci.,11, 465–469 (1988).

    Article  PubMed  CAS  Google Scholar 

  19. A. B. MacDermott, M. L. Mayer, G. L. Westbrook, et al., “NMDA-receptor activation increases cytoplasmic calcium concentration in cultured spinal cord neurones,”Nature,321, 519–522 (1986).

    Article  PubMed  CAS  Google Scholar 

  20. K. Takahashi and N. Akaike, “Calcium antagonist effects on low-threshold (T-type) calcium current in rat isolated hippocampalCA1 pyramidal neurons,”J. Pharmacol. Exp. Ther.,256, 169–175 (1991).

    PubMed  CAS  Google Scholar 

  21. B. J. Alps, C. Calder, and A. D. Wilson, “Comparative protective effects of nicardipine, flunarizine, lidoflazine and nimodipine against ischemic injury in the hippocampus of the Mongolian gerbil,”Br. J. Pharmacol.,93, 877–883 (1988).

    PubMed  CAS  Google Scholar 

  22. T. Beck, J. Nuglish, D. Sauer, et al., “Effects of flunarizine on post-ischemic blood flow, energy metabolism and neuronal damage in the rat brain,”Eur. J. Pharmacol.,158, 271–274 (1988).

    Article  PubMed  CAS  Google Scholar 

  23. J. P. Cullen, J. A. Aldrete, L. Jankovsky, and F. Romo-Solas, “Protective action of phenytoin in cerebral ischemia,”Anesth. Analg.,58, 165–169 (1979).

    PubMed  CAS  Google Scholar 

  24. Y. Yaari, B. Hamon, and H. D. Lux, “Development of two types of calcium channels in cultured mammalian hippocampal neurons,”Science,235, 680–682 (1987).

    PubMed  CAS  Google Scholar 

  25. C. A. Endersby, E. G. Brown, and M. S. Perelman, “Safety properties of lacidipine: A review of clinical data,”J. Cardiovascul. Pharmacol.,17, Suppl. 4, S45–47 (1991).

    Google Scholar 

  26. A. Scriabine, T. Schuurman, and J. Traber, “Pharmacological basis for the use of nimodipine in central nervous system disorders,”FASEB J.,3, 1799–1806 (1989).

    PubMed  CAS  Google Scholar 

  27. S. Kawamura, N. Yasui, M. Shirasawa, and H. Fukasawa, “Effects of a Ca2+ entry blocker (nilvadipine) on acute focal cerebral ischemia in rats,”Exp. Brain Res.,83, 434–438 (1991).

    Article  PubMed  CAS  Google Scholar 

  28. A. Shiino, M. Matusda, T. Susumu, and J. Handa, “Effects of the calcium antagonist nilvadipine on focal cerebral ischemia in spontaneously hypertensive rats,”Surg. Neural.,35, 105–110 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akaike, N. Distribution of different types of calcium channels in the brain structures. Neurophysiology 29, 233–240 (1997). https://doi.org/10.1007/BF02461234

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02461234

Keywords

Navigation