Applied catastrophe theory in the social and biological sciences

Abstract

Catastrophe theory is a mathematical theory which, allied with a new and controversial methodology, has claimed wide application, particularly in the biological and the social sciences. These claims have recently been heatedly opposed. This article describes the debate and assesses the merits of the different arguments advanced.

This is a preview of subscription content, access via your institution.

Literature

  1. Amson, J. C. 1975. “Catastrophe Theory: A Contribution to the Study of Urban Systems?”Envir. Planning,B2, 177–221.

    Google Scholar 

  2. Arnol’d, V. I. 1972. “Integrals of Rapidly Oscillating Functions and Singularities of Projections of Lagrangian Submanifolds.” (English translation)Funct. Analyt. Applic.,6, 222–224.

    Article  MATH  Google Scholar 

  3. Benham, C. J. and J. J. Kozak. 1976. “Denaturation: An Example of a Catastrophe. II. Two-state transitions.”J. theor. Biol.,63, 125–149.

    Article  Google Scholar 

  4. — and J. J. Kozak. 1977. “Denaturation: An Example of a Catastrophe. III. Phase Diagrams for Multistate Transitions.”J. theor. Biol.,66, 679–693.

    Article  Google Scholar 

  5. — and J. J. Kozak. 1978. “Catastrophes, in Statistical Biophysics.”Behavl Sci.,23, 355–359.

    Google Scholar 

  6. Berlinski, D. 1975. “Mathematical Models of the World.”Synthèse,31, 211–227.

    MathSciNet  Article  Google Scholar 

  7. Berry, M. V. 1976. “Waves and Thom’s Theorem.”Adv. Phys.,25, 1–25.

    MathSciNet  Article  Google Scholar 

  8. Bröcker, Th. 1975. “Differentiable Germs and Catastrophes” (Trans. L. Lander).London Mathl Soc. Lecture Notes, Vol. 17. Cambridge University Press.

  9. Chillingworth, D. R. J. 1976. “Structural Stability of Mathematical Models: The Role of the Catastrophe Method.” InMathematical Modelling, Ed. J. G. Andrews and R. R. McLone. London: Butterworths.

    Google Scholar 

  10. Cobb, L. 1978. “Stochastic Catastrophe Models and Multimodal Distributions.”Behavl Sci.,23, 360–374.

    MathSciNet  Google Scholar 

  11. Cobb, L. in press a. “Parameter Estimation for Ensembles of Nonlinear Stochastics Systems.”

  12. Cobb, L. in press b. “Parameter Estimation for Cusp Catastrophe Models.”

  13. Cooke, J. and E. C. Zeeman. 1976. “A Clock and Wavefront Model for Control of the Number of Repeated Structures During Animal Morphogenesis.”J. theor. Biol.,58, 455–476.

    Google Scholar 

  14. Croll, J. 1976. “Is Catastrophe Theory Dangerous?”New Scient.,70, 630–632.

    Google Scholar 

  15. Deakin, M. A. B. 1977. “Catastrophe Theory and Its Applications.”Mathl Scient.,2, 73–94.

    MATH  Google Scholar 

  16. Deakin, M. A. B. to appear. “The Impact of Catastrophe Theory on the Philosophy of Science.” Preprint. Monash University Mathematics Department.

  17. Dodgson, M. M. 1975. “Quantum Evolution and the Fold Catastrophe.”Evolut. Theory.,1, 107–118.

    Google Scholar 

  18. — 1976. “Darwin’s Law of Natural Selection and Thom’s Theory of Catastrophes.”Mathl Biosci. 28, 243–274.

    Article  Google Scholar 

  19. —. 1977. “Catastrophe Theory.”Nature,270, 658.

    Article  Google Scholar 

  20. — and A. Hallam. 1977. “Allopatric Speciation and the Fold Catastrophe.”Am. Nat.,111, 415–433.

    Article  Google Scholar 

  21. Duistermaat, J. J. 1974. “Oscillatory Integrals, Lagrange Immersions, and Unfoldings of Singularities.”Communs pure appl. Math.,27, 207–281.

    MATH  MathSciNet  Google Scholar 

  22. Elsdale, T. R., M. J. Pearson and M. Whitehead. 1976. “Abnormalities in Somite Segregation Induced by Heat Shocks toXenopus embryo.”J. Embryol. exp. Morph.,35, 625–635.

    Google Scholar 

  23. Fowler, D. H. 1972. “The Riemann-Hugoniot Catastrophe and Van der Waals’ Equation.” InTowards a Theoretical Biology, Vol. 4: Essays, Ed. C. H. Waddington. Edinburgh University Press.

  24. Fox, V. 1971. “Why prisoners riot.”Fed. Prob.,35, 9–14.

    Google Scholar 

  25. Golubitsky, M. 1978. “An Introduction to Catastrophe Theory and its Applications”SIAM Rev.,20, 352–387.

    MATH  MathSciNet  Article  Google Scholar 

  26. Guckenheimer, J. 1978. “The Catastrophe Controversy.”Math. Int.,1, 15–20.

    MATH  MathSciNet  Article  Google Scholar 

  27. Hardin, G. (1960). “The Competitive Exclusion Principle.”Science,131, 1292–1297.

    Google Scholar 

  28. Hodgkin, A. L. and A. F. Huxley. 1952. “A Quantitative Description of Membrane Current and its Applications to Conduction and Excitation in Nerve.”J. Physiol.,117, 500–544.

    Google Scholar 

  29. Isnard, C. A. and E. C. Zeeman. 1976. “Some Models from Catastrophe Theory in the Social Sciences.” InThe Use of Models in the Social Sciences, Ed. L. Collins. London: Tavistock.

    Google Scholar 

  30. Klahr, D. and J. G. Wallace. 1976.Cognitive Development—An Information-Processing View. New York: Wiley. (Note, in particular, pp. 201–208).

    Google Scholar 

  31. Kolata, G. B. 1977. “Catastrophe Theory: The Emperor has no Clothes.”Science,196, 287, 350–351.

    MathSciNet  Google Scholar 

  32. Kozak, J. J. and C. J. Benham. 1974. “Denaturation: An Example of a Catastrophe.”Proc. natn. Acad. Sci. U.S.A.,71, 1977–1981.

    MATH  Article  Google Scholar 

  33. Lavis, D. A. and G. M. Bell. 1977. “Thermodynamic Phase Changes and Catastrophe Theory.”Bull. Inst. math. Applic.,13, 34–42.

    MathSciNet  Google Scholar 

  34. Lewis, M. 1977. “Catastrophe Theory.”Science,196, 1271.

    Google Scholar 

  35. Lorenz, K. 1966.On Agression. London: Methuen.

    Google Scholar 

  36. Lu, Y.-C. 1976.Singularity Theory and an Introduction to Catastrophe Theory. Berlin: Springer.

    MATH  Google Scholar 

  37. Mees, A. I. 1975. “The Revival of Cities in Medieval Europe: An Application of Catastrophe Theory.”Reg. Sci. Urb. Econ.,5, 403–425.

    Article  Google Scholar 

  38. Onsager, L. 1944. “Crystal Statistics. I. A Two-Dimensional Model with Order-Disorder Transition.”Phys. Rev.,65, 117–149.

    MATH  MathSciNet  Article  Google Scholar 

  39. Panati, C. 1976. “Catastrophe Theory.”Newsweek, 19/1/76, 46-47.

  40. Popper, K. 1959.The Logic of Scientific Discovery (English Translation). New York: Basic Books.

    MATH  Google Scholar 

  41. Poston, T. 1978. “The Elements of Catastrophe Theory or the Honing of Occam’s Razor.” InTransformations: Mathematical Approaches to Culture Change, Ed. K. Cooke and C. Renfrew. New York: Academic Press.

    Google Scholar 

  42. Poston, T. in press. “On Deducing the Presence of Catastrophes.”Math. Sci. Hum.

  43. Poston, T. and I. Stewart. 1976.Taylor Expansions and Catastrophes. Research Notes in Mathematics Vol. 7. London: Pitman.

    Google Scholar 

  44. — 1978.Catastrophe Theory and Its Applications. Surveys and Reference Works in Mathematics Vol. 2. London: Pitman.

    Google Scholar 

  45. — and A. G. Wilson 1977. “Facility Size vs Distance Travelled: Urban Services and the Fold Catastrophe.”Envir. Planning,A9, 681–686.

    Google Scholar 

  46. Renfrew, A. C. and T. Poston. 1978. “Discontinuities in the Endogenous Change of Settlement Pattern.” InTransformations: Mathematical Approaches to Culture Change, Ed. K. Cooke and C. Renfrew. New York: Academic Press.

    Google Scholar 

  47. Rosenhead, J. 1976. “Prison ‘Catastrophe’.”New Scient.,71, 140.

    Google Scholar 

  48. Rybak, B. and J. J. Béchet. 1961. “Recherches sur l’Électromécanique Cardiaque.”Path. Biol.,9, 1861-1871, 2035–2054.

    Google Scholar 

  49. Senechal, M., M. Lewis, R. Rosen and M. A. B. Deakin (separately). 1977. “Catastrophe Theory.” (Letters to the editor.)Science,196, 1271–1272.

    Google Scholar 

  50. Sewell, M. J. 1975. “Kitchen Catastrophe.”Mathl. Gaz.,59, 246–249.

    Google Scholar 

  51. Stewart, I. N. (1975). “The Seven Elementary Catastrophes.”New Scient. 68, 447–454.

    Google Scholar 

  52. Stewart, I. N. and A. E. R. Woodcock. In press. “On Zeeman’s Equation for the Propagation of the Nerve Impulse.”

  53. Sussman, H. J. 1975. “Catastrophe Theory.”Synthèse,31, 229–270.

    Article  Google Scholar 

  54. — 1976. “Catastrophe Theory—A Preliminary Critical Study.” InPSA 1976: Proceedings of the 1976 Biennial Meeting of the Philosophy of Science Association, Ed. F. Suppe and P. Asquith. East Lansing: Phil. Sci. Assn.

    Google Scholar 

  55. — 1977. “Catastrophe Theory: A Skeptic.” (Letter to the Editor.)Science,197, 820–821.

    Google Scholar 

  56. — 1979. Review ofCatastrophe Theory: Selected Papers 1972-1977 (by E. C. Zeeman).SIAM Review,21, 268–276.

    Article  Google Scholar 

  57. — and Zahler, R. S. 1977. “Catastrophe Theory: Mathematics Misused.”The Sciences,17 (6), 20–23.

    Google Scholar 

  58. — and-— 1978. “Catastrophe Theory as Applied to the Social and Biological Sciences: A Critique.”Synthèse 37, 117–216. Reprinted in modified form as “A Critique of Applied Catastrophe Theory in the Social Sciences.”Behav. Sci.,23, 383–389, 1978.

    Article  Google Scholar 

  59. Thom, R. 1972a.Stabilité Structurelle et Morphogénèse. Reading, MA: Benjamin.

    Google Scholar 

  60. Thom, R. 1972b. “Structuralism and Biology.” InTowards a Theoretical Biology, Vol. 4: Essays, Ed. C. H. Waddington. Edinburgh University Press.

  61. — 1975. “Answer to Christopher Zeeman’s Reply.” InDynamical Systems—Warwick 1974 Ed. A. Manning.Lecture Notes in Mathematics Vol. 468. Berlin: Springer.

    Google Scholar 

  62. — 1976a. “The Two-fold way of Catastrophe Theory.” InStructural Stability, the Theory of Catastrophes, and Applications in the Sciences Ed. P. Hilton.Lecture Notes in Mathematics Vol. 525. Berlin: Springer.

    Google Scholar 

  63. Thom, R. 1976a. “Applications of Catastrophe Theory.” Compiled from notes taken by A. W.-C. Lun, Ed. M. A. B. Deakin, Preprint, Monash University Mathematics Department.

  64. Thom, R. 1977. “Structural Stability, Catastrophe Theory, and Applied Mathematics.” (The John von Neumann Lecture, 1976.)SIAM Rev.,19, 189–201.

    MATH  MathSciNet  Article  Google Scholar 

  65. — and M. Dodgson (separately). 1977. “Catastrophe Theory.” (Letters to the Editor.)Nature,270, 658.

    Article  Google Scholar 

  66. Thompson, M. 1976. “Class, Caste, the Curriculum Cycle and the Cusp Catastrophe.”Stud. Higher Ed.,1, 31–46.

    Article  Google Scholar 

  67. Thompson, M. to appear. “The Geometry of Confidence.”

  68. Woodcock, A. E. R. and M. Davis. 1978.Catastrophe Theory. New York: Dutton.

    MATH  Google Scholar 

  69. Zahler, R. S. 1978. “Catastrophe Theory Reply.” (Letter to the Editor.)Nature,271, 401.

    Article  Google Scholar 

  70. — and H. J. Sussmann. 1977. “Claims and Accomplishments of Applied Catastrophe Theory.”Nature,269, 759–763.

    Article  Google Scholar 

  71. Zeeman, E. C. 1971. “The Geometry of Catastrophe.”Times Literary Supplement 10/12/71, pp. 1556-1557.

  72. Zeeman, E. C. 1972a. “Different Equations for the Heartbeat and Nerve Impulse.” InTowards a Theoretical Biology, Vol. 4: Essays, Ed. C. H. Waddington. Edinburgh University Press.

  73. Zeeman, E. C. 1972b. “A Catastrophe Machine.” InTowards a Theoretical Biology, Vol. 4: Essays Ed. C. H. Waddington. Edinburgh University Press.

  74. — 1974a. “Primary and Secondary Waves in Developmental Biology.” InSome Mathematical Questions in Biology VI, Ed. S. A. Levin.Lectures on Mathematics in the Life Sciences, Vol. 7. Providence, R.I.: Am. Math. Soc.

    Google Scholar 

  75. — 1974b. “On the Unstable Behaviour of Stock Exchanges.”J. Mathl Econ.,1, 39–49.

    MATH  MathSciNet  Article  Google Scholar 

  76. — 1976a. “Catastrophe Theory.”Scient. Am.,234 (4), 65–83.

    Article  Google Scholar 

  77. — 1976b. “Euler Buckling.” InStructural Stability, the Theory of Catastrophes, and Applications in the Sciences Ed. P. Hilton.Lecture Notes in Mathematics Vol. 525. Berlin: Springer.

    Google Scholar 

  78. — 1976c. “Gastrulation and Formation of Somites and Amphibia and Birds.” InStructural Stability, the Theory of Catastrophes, and Applications in the Sciences, Ed. P. Hilton).Lecture Notes in Mathematics Vol. 525. Berlin: Springer.

    Google Scholar 

  79. — 1976d. “A Mathematical Model for Conflicting Judgements Caused by Stress, Applied to Possible Misestimations of Speed Caused by Alcohol.”Br. J. math. statist Psychol.,29, 19–31.

    MATH  Google Scholar 

  80. — 1976e. “Brain Modelling.”In Structural Stability, the Theory of Catastrophes, and Applications in the Sciences, Ed. P. Hilton.Lecture Notes in Mathematics Vol. 525. Berlin: Springer.

    Google Scholar 

  81. — 1976f. “Duffing’s Equation in Brain Modelling.”Bull. Inst. math. Applic.,12, 207–214

    MathSciNet  Google Scholar 

  82. — 1977a. “Catastrophe Theory: Draft for a Scientific American Article.” InCatastrophe Theory: Selected Papers 1972–1977 (by E. C. Zeeman). London: Addison-Wesley.

    Google Scholar 

  83. — 1977b.Catastrophe Theory: Selected Papers 1972–1977. London: Addison-Wesley. [This reprints the eleven preceding papers and the next one in this reference list.]

    MATH  Google Scholar 

  84. —, C. Hall, P. J. Harrison, H. Marriage and P. Shapland. 1976. “A Model for Institutional Disturbances.”Br. J. math. statist. Psychol.,29, 66–80.

    MATH  Google Scholar 

  85. —, R. Bellairset al., I. Stewart, M. Berry, J. Guckenheimer, and A. E. P. Woodcock (separately). 1977. “In Support of Catastrophe Theory.” (Letters to the Editor.)Nature,270, 381–384.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Deakin, M.A.B. Applied catastrophe theory in the social and biological sciences. Bltn Mathcal Biology 42, 647–679 (1980). https://doi.org/10.1007/BF02460985

Download citation

Keywords

  • Nerve Impulse
  • Catastrophe Theory
  • Catastrophe Model
  • Cusp Catastrophe
  • Cusp Surface