Bulletin of Mathematical Biology

, Volume 42, Issue 5, pp 601–625 | Cite as

Theory of cation-phospholipid-induced shape changes in a lipid bilayer couple

  • Gregory S. B. Lin


A quantitative model of ion binding and molecular interactions in the lipid bilayer membrane is proposed and found to be useful in examining the factors underlying such membrane characteristics as shape, sidedness, stability and vesicle size at various cation concentrations. The lipid membrane behaves as a bilayer couple whose preferential radius of curvature depends on the expansion or contraction of one monolayer relative to the other. It is proposed that molecular packing may be altered by electrostatic repulsion of adjacent like-charged phospholipid headgroups, or by bringing two headgroups closer together by divalent cation crossbridging. The surface concentrations of each type of cation-phospholipid complex can be described by simple binding equilibria and the Gouy-Chapman-Stern formulation for the surface potential in a diffuse double layer. The asymmetric distribution of acidic phospholipids in most biological membranes can account for the differential effects of identical ionic environments on either side of the bilayer. The fraction of vesicle material which tends to have a right-side-out orientation may be approximated by a normal distribution about the mean curvature. The theory generates vesicle sidedness distributions that, when fitted to experimental results from human erythrocyte membranes, provide an alternative method of estimating intrinsic cationphospholipid dissociation constants and other molecular parameters of the bilayer. The results also corroborate earlier suggestions that the Gouy-Chapman theory tends to overestimate free counter-ion concentrations at the surface under large surface potentials.


Divalent Cation Phosphatidic Acid Acidic Phospholipid Human Erythrocyte Membrane Phospholipid Headgroups 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Babcock, K. L. 1963. “Theory of Chemical Properties of Soil Colloidal Systems at Equilibrium.”Hilgardia,34, 417–542.Google Scholar
  2. Barlow, Jr., C.A. 1970. “The Electrical Double Layer.” InPhysical Chemistry: An Advanced Treatise. (Eds. H. Eyring, D. Henderson and W. Jost), Vol. 9A, pp. 167–246. New York: Academic Press.Google Scholar
  3. Bockris, J. O’M. and A. K. N. Reddy. 1970.Modern Electrochemistry. Vol. 2, p. 722–728. New York: Plenum Press.Google Scholar
  4. Bolt, G. H. 1955. “Analysis of the Validity of the Guoy-Chapman Theory of the Electrical Double Layer.”J. Colloid Sci.,10, 206–208.CrossRefGoogle Scholar
  5. Carvalho, A. P., H. Sanui and N. Pace. 1963. “Calcium and Magnesium Binding Properties of Cell Membrane Materials.”J. Cell. Comp. Physiol.,62, 311–317.CrossRefGoogle Scholar
  6. Chrzeszczyk, A., A. Wishnia and C. S. Springer. 1977. “The Intrinsic Structural Asymmetry of Highly Curved Phospholipid Bilayer Membranes.”Biochim. Biophys. Acta,470, 161–169.CrossRefGoogle Scholar
  7. Demel, R. A., W. S. M. G. van Kessel, R. F. A. Zwaal, B. Roelofsen and L. L. M. van Deenen. 1975. “Relationship Between Various Phospholipase Actions on Human Red Cell Membranes and the Interfacial Phospholipid Pressure in Monolayers.”Biochim. Biophys. Acta,406, 97–107.CrossRefGoogle Scholar
  8. Fisher, K. A. 1976. “Analysis of Membranes Halves: Cholesterol.”Proc. nat. Acad. Sci. U.S.A.,73, 173–177.CrossRefGoogle Scholar
  9. Gent, W. L. G., J. R. Trounce and M. Walser. 1964. “The Binding of Calcium Ions by the Human Erythrocyte Membrane.”Archs. biochem. Biophys.,105, 582–589.CrossRefGoogle Scholar
  10. Glaser, R., H. Wolf and S. Blottner. 1974. “The Behavior of Univalent Ions in the Membrane-Near Space of Human Erythrocytes.”Bioelectrochem. Bioenerg.,1, 343–349.CrossRefGoogle Scholar
  11. Gordesky, S. E. and G. V. Marinetti. 1973. “The Asymmetric Arrangement of Phospholipids in the Human Erythrocyte Membrane.”Biochem. biophys. Res. Commun.,50, 1027–1031.CrossRefGoogle Scholar
  12. Gur, Y., I. Ravina and A. J. Babchin. 1978. “On the Electrical Double Layer Theory.”J. Colloid Interface Sci.,64, 333–341.CrossRefGoogle Scholar
  13. Hall, J. E. and S. A. Simon. 1976. “A Simple Model for Calcium Induced Exocytosis.”Biochim. biophys. Acta,536, 613–616.Google Scholar
  14. Hauser, H., A. Darke and M. C. Phillips. 1976. “Ion-Binding to Phospholipids: Interaction of Calcium With Phosphatidylserine.”Eur. J. Biochem.,62, 335–344.CrossRefGoogle Scholar
  15. Haydon, D. A. 1964. “The Electrical Double Layer and Electrokinetic Phenomena.” InRecent Progress in Surface Science (Eds. J. F. Danielli, K. G. A. Pankhurst and A. C. Riddiford). Vol. 1, pp. 94–158. New York: Academic Press.Google Scholar
  16. Hendrickson, H. S. and J. G. Fullington. 1965. “Stabilities of Metal Complexes of Phospholipids: Ca(II), Mg(II) and Ni(II) Complexes of Phosphatidylserine and Triphosphoinositide.”Biochemistry,4, 1599–1605.CrossRefGoogle Scholar
  17. Huang, C. and J. P. Charlton. 1971. “Studies on Phosphatidylcholine Vesicles. Determination of Partial Specific Volumes by Sedimentation Velocity Method.”J. biol. Chem.,246, 2555–2560.Google Scholar
  18. — and J. T. Mason. 1978. “Geometric Packing Constraints in Egg Phosphatidylcholine Vesicles.”Proc. nat. Acad. Sci. U.S.A.,75, 308–310.CrossRefGoogle Scholar
  19. Johnson, R. M. and J. Robinson. 1976. “Morphological Changes in Asymmetric Erythrocyte Membranes Induced by Electrolytes.”Biochem. biophys. Res. Commun.,70, 925–931.CrossRefGoogle Scholar
  20. Joos, R. W. and C. W. Carr. 1967. “The Binding of Calcium Mixtures of Phospholipids.”Proc. soc. exp. biol. Med.,124, 1268–1272.Google Scholar
  21. Kwant, W. O. and P. Seeman. 1969. “The Displacement of Membrane Calcium by a Local Anesthetic (Chlorpromazine)”Biochim. biophys. Acta,193, 338–349.CrossRefGoogle Scholar
  22. Lecuyer, H. and D. G. Dervichian. 1969. “Structure of Aqueous Mixtures of Lecithin and Cholesterol.”J. mol. Biol.,45, 39–57.CrossRefGoogle Scholar
  23. Lin, G. S. B. and R. I. Macey. 1978. “Shape and Stability Changes in Human Erythrocyte Membranes Induced by Metal Cation.”Biochim. biophys. Acta,512, 270–283.CrossRefGoogle Scholar
  24. Ohki, S. 1970. “Properties of Lipid Bilayer Membranes. Membrane Thickness.”J. Theor. Biol.,26, 277–287.CrossRefGoogle Scholar
  25. Papahadjopoulos, D. 1968. “Surface Properties of Acidic Phospholipids: Interaction of Monolayer and Hydrated Liquid Crystals with Uni- and Bivalent Metal Ions.”Biochim. biophys. Acta,163, 240–264.CrossRefGoogle Scholar
  26. Poznansky, M. and Y. Lange. 1976. “Translayer Movement of Cholesterol in Dipalmitoyllecithin-cholesterol Vesicles.”Nature,259, 420–421.CrossRefGoogle Scholar
  27. Puskin, J. S. 1977. “Divalent Cation Binding to Phospholipids: An EPR Study.”J. Membr. Biol.,35, 39–55.CrossRefGoogle Scholar
  28. Rojas, E. and J. M. Tobias. 1965. “Membrane Model: Association of Inorganic Cations with Phospholipid Monolayers.”Biochim. biophys. Acta,94, 394–404.Google Scholar
  29. Rothman, J. E. and E. A. Dawidowicz. 1975. “Asymmetric Exchange of Vesicle Phospholipids Catalyzed by the Phosphatidylcholine Exchange Protein. Measurement of Inside-Outside Transitions.”Biochemistry,14, 2809–2816.CrossRefGoogle Scholar
  30. Rouser, G., G. K. Nelson, S. Fleischer and G. Simon. 1968. “Lipid Composition of Animal Cell Membranes, Organelles and Organs.” InBiological Membranes: Physical Fact and Function. (Ed. D. Chapman), pp. 5–69. London: Academic Press.Google Scholar
  31. Sanui, H., A. P. Carvalho and N. Pace. 1962. “Relationship of Hydrogen Ion Binding to Sodium and Potassium Binding by Rat Liver Cell Microsomes and Human Erythrocyte Ghosts.”J. cell. comp. Physiol.,59, 241–250.CrossRefGoogle Scholar
  32. — and N. Pace. 1962. “Sodium and Potassium Binding by Human Erythrocyte Ghosts.”J. cell. comp. Physiol.,59, 251–257.CrossRefGoogle Scholar
  33. Shah, D. O. and J. H. Schulman. 1967. “Influence of Calcium, Cholesterol and Unsaturation on Lecithin Monolayers.”J. Lipid. Res.,8, 215–226.Google Scholar
  34. Sheetz, M. P. and S. J. Singer. 1974. “Biological Membranes as Bilayer Couples. A Molecular Mechanism of Drug-Erythrocyte Interactions.”Proc. natl. Acad. Sci. U.S.A.,71, 4457–4461.CrossRefGoogle Scholar
  35. Tanford, C. and J. A. Reynolds. 1976. “Characterization of Membrane Proteins in Detergent Solutions.”Biochim. biophys. Acta,457, 133–170.Google Scholar
  36. Tien, H. T. and E. A. Dawidowicz. 1966. “Black Lipid Films in Aqueous Media: A New Type of Interfacial Phenomenon.”J. Colloid Interface Sci.,22, 438–453.CrossRefGoogle Scholar
  37. Tolberg, A. B. and R. I. Macey. 1972. “The Release of Membrane-Bound Calcium by Radiation and Sulfhydryl Reagents.”J. cell. Physiol. 79, 43–52.CrossRefGoogle Scholar
  38. Turner, J. D. and G. Rouser. 1970. “Precise Quantitative Determination of Human Blood Lipids by Thin-layer and Triethylaminoethylcellulose Column Chromatography.”Analyt. Biochem.,38, 423–436.CrossRefGoogle Scholar
  39. Vandenheuvel, F. A. 1963. “Study of Biological Structure at the Molecular Level with Stereomodel Projections: I. The Lipids in the Myelin Sheath of Nerve.”J. Am. Oil Chem. Soc.,40, 455–471.Google Scholar
  40. Verkleij, A. J., R. F. A. Zwaal, B. Roelofsen, P. Comfurius, D. Kastelijn and L. L. M. van Deenen. 1973. “The Asymmetric Distribution of Phospholipids in the Human Red Cell Membrane.”Biochem. biophys. Acta,323, 178–193.Google Scholar
  41. Weed, R. I. and B. Chailley. 1972. “Calcium-pH Interactions in the Production of Shape Change in Erythrocytes.”Nouv. Rev. Fr. Hémat. 12, 775–788.Google Scholar

Copyright information

© Society for Mathematical Biology 1980

Authors and Affiliations

  • Gregory S. B. Lin
    • 1
  1. 1.Department of Physiology-Anatomy, and Group in Biophysics and Medical PhysicsUniversity of CaliforniaBerkeleyUSA

Personalised recommendations