Skip to main content
Log in

Effect of phosphate deficiency on growth and protein profile in three strains ofPholiota nameko

  • Original Papers
  • Published:
Mycoscience

Abstract

Changes in mycelial dry weight and soluble protein amounts and acid phosphatase activities on a mycelial dry weight basis in the mycelia and culture supernatants during the Pi-supplied (P+) and Pi-depleted (P) cultures of three strains ofPholiota nameko were examined. Mycelial dry weights of the three strains were lower in the P culture than in the P+ culture. However, soluble protein amounts in the culture supernatants and acid phosphatase activities in the mycelia and culture supernatants of the three strains were higher on a mycelial dry weight basis in the P culture than in the P+ culture. Total proteins of strains N2 and N4 were analyzed by two-dimensional-PAGE. Comparison of electrophoretograms of the P+ and P cultures showed that many polypeptides in the two strains were induced and secreted by Pi deficiency, but more than half of them were specific to each strain. Activity staining of acid phosphatase also revealed that two isozymes with the same molecular weights in the three strains were induced and secreted by Pi deficiency. Adaptive mechanisms for Pi deficiency in the three strains were discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Ball, S. G., Dirick, L., Decq, A., Martiat, J.-C. and Matagne, R. F. 1990. Physiology of starch storage in the monocellular algaChlamydomonas reinhardtii. Plant Sci.66: 1–9.

    Article  CAS  Google Scholar 

  • Bostian, K., A., Lemire, J. M. and Halvorson, H. O. 1983. Physiological control of repressible acid phosphatase gene transcripts inSaccharomyces cerevisiae. Mol. Cell. Biol.3: 839–853.

    PubMed  CAS  Google Scholar 

  • Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem.72: 248–254.

    Article  PubMed  CAS  Google Scholar 

  • Duff, S. M. G., Moorhead, G. B. G., Lefebvre, D. D. and Plaxton, W. C. 1989. Phosphate starvation inducible bypasses of adenylate and phosphate dependent glycolytic enzymes inBrassica nigra suspension cells. Plant Physiol.90: 1275–1278.

    PubMed  CAS  Google Scholar 

  • Elliott, S., Chang, C.-W., Schweingruber, M. E., Schaller, J., Rickli, E. E. and Carbon, J. 1986. Isolation and characterization of the structural gene for secreted acid phosphatase fromSchizosaccharomyces pombe. J. Biol. Chem.261: 2936–2941.

    PubMed  CAS  Google Scholar 

  • Eymann, C., Mach, H., Harwood, C. R. and Hecker, M. 1996. Phosphate-starvation inducible proteins inBacillus subtilis: a two-dimensional gel electrophoresis study. Microbiology142: 3163–3170.

    PubMed  CAS  Google Scholar 

  • Fife, C. A., Newcomb, W. and Lefebrve, D. D. 1990. The effect of phosphate deprivation on protein synthesis and fixed carbon storage reserves inBrassica nigra suspension cells. Can. J. Bot.68: 1840–1847.

    CAS  Google Scholar 

  • Goldstein, A. H., Baertlein, D. A. and McDaniel, R. G. 1988. Phosphate starvation inducible metabolism inLycopersicon esculentum. I. Excretion of acid phosphatase by tomato plants and suspension-cultured cells. Plant Physiol.87: 711–715.

    PubMed  CAS  Google Scholar 

  • Goldstein, A. H., Mayfield, S. P., Danon, A. and Tibbot, B. K. 1989. Phosphate starvation inducible metabolism inLycopersicon esculentum. III. Changes in protein secretion under nutrient stress. Plant Physiol.91: 175–182.

    Article  PubMed  CAS  Google Scholar 

  • Gyaneshwar, P., Parekh, L. J., Archana, G., Poole, P. S., Collins, M. D., Hutson, R. A. and Naresh Kumar, G. 1999. Involvement of a phosphate starvation inducible glucose dehydrogenase in soil phosphate solubilization byEnterobacter asburiae. FEMS Micro. Lett.171: 223–229.

    Article  CAS  Google Scholar 

  • Hurkman, W. J. and Tanaka, C. K. 1986. Solubilization of plant membrane proteins for analysis by two-dimensional gel electrophoresis. Plant Physiol.81: 802–806.

    PubMed  CAS  Google Scholar 

  • Joh, T., Malick, D. H., Yazaki, J. and Hayakawa, T. 1996a. Purification and characterization of secreted acid phosphatase under phosphate-deficient condition inPholiota nameko. Mycoscience37: 65–70.

    Article  CAS  Google Scholar 

  • Joh, T., Tasaki, Y., Yazaki, J. and Hayakawa, T. 1996b. Changes in soluble proteins in the mycelia and the culture filtrate ofPholiota nameko in a phosphate-deficient culture. Trans. Myco. Soc. Japan37: 147–154. (In Japanese.)

    CAS  Google Scholar 

  • Joh, T., Tasaki, Y., Yazaki, J. and Hayakawa, T. 1998. Electrophoretic analysis of soluble proteins specifically synthesized under phosphate deficiency in the mycelia ofPholiota nameko. Mycoscience39: 195–198.

    CAS  Google Scholar 

  • Johnson, J. F., Vance, C. P. and Allan, D. L. 1996. Phosphorus deficiency inLupinus albus. Altered lateral root development and enhanced expression of phosphoenolpyruvate carboxylase. Plant Physiol.112: 31–41.

    Article  PubMed  CAS  Google Scholar 

  • Lacks, S. A. and Springhorn, S. S. 1980. Renaturation of enzymes after polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. J. Biol. Chem.255: 7467–7473.

    PubMed  CAS  Google Scholar 

  • Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature227: 680–685.

    Article  PubMed  CAS  Google Scholar 

  • Lefebvre, D. D., Duff, S. M. G., Fife, C. A. Julien-Inalsingh, C. and Plaxton, W. C. 1990. Response to phosphate deprivation inBrassica nigra suspension cells. Enhancement of intracellular, cell surface, and secreted phosphatase activities compared to increases in Pi-absorption rate. Plant Physiol.93: 504–511

    PubMed  CAS  Google Scholar 

  • Li, M., Shinano, T. and Tadano, T. 1997. Distribution of exudates of lupin roots in the rhizosphere under phosphorus deficient condition. Soil Sci. Plant Nutr.43: 237–245.

    CAS  Google Scholar 

  • Loffler, A., Abel, S., Jost, W., Beintema, J. J. and Glund, K. 1992. Phosphate-regulated induction of intracellular ribonucleases in cultured tomato (Lycopersicon esculentum) cells. Plant Physiol.98: 1472–1478.

    PubMed  Google Scholar 

  • Nagano, M. and Ashihara, H. 1993. Long-term phosphate starvation and respiratory metabolism in suspension-culturedCatharanthus roseus cells. Plant Cell Physiol.34: 1219–1228.

    CAS  Google Scholar 

  • Oakley, B. R., Kirsch, D. R. and Morris, N. R. 1980. A simplified ultrasensitive silver stain for detecting proteins in polyacrylamide gels. Anal. Biochem.105: 361–365.

    Article  PubMed  CAS  Google Scholar 

  • Osorio, G. and Jerez, C. A. 1996. Adaptive response of archaeonSulfolobus acidocaldarius BC65 to phosphate starvation. Microbiology142: 1531–1536.

    Article  PubMed  CAS  Google Scholar 

  • Phongdara, A., Merckelbach, A., Keup, P., Gellissen, G. and Hollenberg, C. P. 1998. Cloning and characterization of the gene encoding a repressible acid phosphatase (PHO1) from the methylotrophic yeastHansenula polymorpha. Appl. Microbiol. Biotechnol.50: 77–84.

    Article  PubMed  CAS  Google Scholar 

  • Tadano, T. and Sakai, H. 1991. Secretion of acid phosphatase by the roots of several crop species under phosphorus-deficient conditions. Soil Sci. Plant Nutr.37: 129–140.

    CAS  Google Scholar 

  • Theodorou, M. E., Elrifi, I. R., Turpin, D. H. and Plaxton, W. C. 1991. Effects of phosphorus limitation on respiratory metabolism in the green algaSelenastrum minutum. Plant Physiol.95: 1089–1095.

    PubMed  CAS  Google Scholar 

  • Torriani, A. and Ludtke, D. N. 1985. The pho regulon ofEscherichia coli. In: The molecular biology of bacterial growth, (ed. by Schaechter, M., Neidhardt, F., C., Ingraham, J. and Kieldgaard, N., O.), pp 224–243. Jones and Bartlett, Boston.

    Google Scholar 

  • Usuda, H. and Shimogawara, K. 1995. Phosphate deficiency in maize. VI. Changes in the two-dimensional electrophoretic patterns of soluble proteins from second leaf blades associated with induced senescence. Plant Cell Physiol.36: 1149–1155.

    CAS  Google Scholar 

  • Ueki, K. and Sato, S. 1971. Effect of inorganic phosphate on the extracellular acid phosphatase activity of tobacco cells cultured in vitro. Physiol. Plant.24: 506–511.

    Article  Google Scholar 

  • Yazaki, J., Joh, T., Suzuki, K., Ogawa, K. and Hayakawa, T. 1998. Purification and characterization of glucose-1-phosphatase from mycelia ofPholiota nameko. Mushroom Sci. and Biotech.6: 1–8.

    Google Scholar 

  • Yazaki, J., Joh, T., Tomida, S. and Hayakawa, T. 1997. Acid phosphatase isozymes secreted under phosphate-deficient conditions inPholiota nameko. Mycoscience38: 347–350.

    CAS  Google Scholar 

  • Yoshida, K., Kuromitsu, Z., Ogawa, N., Ogawa, K. and Oshima, Y. 1987. Regulatory circuit for phosphatase synthesis inSaccharomyces cerevisiae. In: Phosphate metabolism and cellular regulation in microorganisms, (ed. by Torriani-Gorini, A., Rothman, F. G., Silver, S., Wright, A. and Yagil, E.), pp 49–55. American Society for Microbiology, Washington, DC.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Tasaki, Y., Azwan, A., Hara, T. et al. Effect of phosphate deficiency on growth and protein profile in three strains ofPholiota nameko . Mycoscience 42, 489–498 (2001). https://doi.org/10.1007/BF02460947

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02460947

Key Words

Navigation