Skip to main content
Log in

Purification and properties of α-glucose 1-phosphate-forming trehalose phosphorylase from a basidiomycete,Pleurotus ostreatus

  • Original Papers
  • Published:
Mycoscience

Abstract

Pleurotus ostreatus produced a high activity of α-glucose 1-phosphate (α-Glc 1-P) forming trehalose phosphorylase in vegetative mycelia and fruit-bodies. The enzyme was purified to homogeneity from the fruit-bodies by a procedure involving ammonium sulfate fractionation, DEAE-cellulose column chromatographies and cellulose phosphate column chromatographies. The enzyme catalyzes both the phosphorolysis of trehalose to produce α-Glc 1-P and glucose, and the synthesis of trehalose. It was not active toward other α- or β-glucosyl disaccharides and polysaccharides. The optimum pH was 7.0 for phosphorolysis and 6.4 for synthesis of trehalose. The Km values for trehalose and Pi in phospholytic reaction were 75 mM and 4.2 mM, respectively. Those for glucose and α-Glc 1-P in synthetic reaction were 505 mM and 38 mM, respectively. The estimated molecular mass by the sedimentation equilibrium method using an ultracentrifuge was 120 kDa. The molecular mass of the subunit (61 kDa) by SDS-polyacrylamide gel electrophoresis suggested that the enzyme was a dimer of two identical subunits. The addition of glycerol higher than 25% into the enzyme solution stabilized its activity. The removal of phosphorus ions from the enzyme solution, by means of dialysis or electrophoresis, caused inactivation of the enzyme, probably by dissociation of the holoenzyme into the subunit proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Belocopitow, E. and Maréchal, L. R. 1970. Trehalose phosphorylase fromEuglena gracilis. Biochim. Biophys. Acta198: 151–154.

    PubMed  CAS  Google Scholar 

  • Cabib, E. and Leloir, L. F. 1968. The biosynthesis of trehalose phosphate. J. Biol. Chem.231: 259–275.

    Google Scholar 

  • Davis, B. J. 1964. Disc electrophoresis. II. Method and application to human serum proteins. Ann. N.Y. Acad. Sci.121: 404–427.

    PubMed  CAS  Google Scholar 

  • Eis, C. and Nidetzky, B. 1999. Characterization of trehalose phosphorylase fromSchizophyllum commune. Biochem. J.341: 385–393.

    Article  PubMed  CAS  Google Scholar 

  • Elbein, A. D. 1974. The metabolism of α,α-trehalose. Adv. Carbohydr. Chem. Biochem.29: 227–256.

    Google Scholar 

  • Fitting, C. and Doudorff, M. 1952. Phosphorolysis of maltose by enzyme preparations fromNeisseria meningitidis. J. Biol. Chem.199: 153–163.

    PubMed  CAS  Google Scholar 

  • Graves, D. J. and Wang, J. H. 1972. The Enzyme, Vol. 7, 3rd ed. (Boyer, P. D. ed.), p. 435, Academic Press, New York.

    Google Scholar 

  • Hammond, J. B. W. and Nichols, R. 1976. Carbohydrate metabolism inAgaricus bisporus (Lange) Sing.: changes in soluble carbohydrates during growth of mycelium and sporophore. J. Gen. Microbiol.93: 309–320.

    PubMed  CAS  Google Scholar 

  • Kitamoto, Y., Akashi, H., Tanaka, H. and Mori, N. 1988. α-glucose-1-phosphate formation by a novel trehalose phosphorylase fromFlammulina velutipes. FEMS Microbiol. Lett.55: 147–150.

    Article  CAS  Google Scholar 

  • Kitamoto, Y. and Gruen, H. E. 1976. Distribution of cellular carbohydrates during development of the mycelium and fruit-bodies ofFlammulina velutipes. Plant Physiol.58: 485–491.

    Article  PubMed  CAS  Google Scholar 

  • Kitamoto, Y. and Mori, N. 1983. Function and metabolism of trehalose in fruiting of basidiomycetes. Proceedings of 3rd International Mycorogical Congress, Tokyo, p. 198.

  • Kitamoto, Y., Nishio, S., Minami, S. and Ichikawa, Y. 1982. Distribution of low molecular weight carbohydrates in Basidiomycetes. Abst. Ann. Meet. Mycol. Soc. Japan, p. 47. (In Japanese.)

  • Kitamoto, Y., Tanaka, H. and Osaki, N. 1998. Survey of α-glucose 1-phosphate forming trehalose phosphorylase and trehalase in various fungi including basidiomycetous mushrooms. Mycoscience39: 327–331.

    CAS  Google Scholar 

  • Kitamoto, Y., Terashita, T., Matsuda, S., Obata, S., Hosoi, N., Kono, M. and Ichikawa, Y. 1978. Carbohydrate metabolism inFavolus arcularius: Changes in cellular carbohydrates during development of the mycelium and fruit bodies. Trans. Mycol. Soc. Japan19: 273–281. (In Japanese.)

    CAS  Google Scholar 

  • Kamogawa, A., Yokobayashi, K. and Fukui, T. 1973. Purification and properties of maltose phosphorylase fromLactobacillus brevis. Agric. Biol. Chem.37: 2813–2819.

    CAS  Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem.193: 265–275.

    PubMed  CAS  Google Scholar 

  • Machida, Y. and Nakanishi, T. 1982. Utilization of bacterial xanthine oxidase for inorganic phosphorus determination. Agric. Biol. Chem.46: 807–808.

    CAS  Google Scholar 

  • Maréchal, L. R. and Belocopitow, E. 1972. Metabolism of trehalose inEugrena gracillis. J. Biol. Chem.237: 3223–3228.

    Google Scholar 

  • Meselson, M., Stahl, F. W. and Vinograd, J. 1957. Equilibrium sedimentation of macromolecules in density gradients. Proc. Natl. Acad. Sci. U.S.A43: 581–588.

    Article  PubMed  CAS  Google Scholar 

  • Mikamo, M. 1974. A sugar alcohol inLentinus edodes (Berk.) Sing. Nippon Nogeikagaku Kaishi48: 69–71.

    CAS  Google Scholar 

  • Sweeley, C. C., Bnentley, R., Makita, M. and Wells, W. W. 1963. Gas-chromatography of trimethylsilyl derivatives of sugars and relative substances. J. Am. Chem. Soc.85: 2497–2507.

    Article  CAS  Google Scholar 

  • Somogyi, M. 1952. Notes on sugar determination. J. Biol. Chem.165: 19–23.

    Google Scholar 

  • Weber, W, and Osborn, M. 1969. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J. Biol. Chem.244: 4406–4412.

    PubMed  CAS  Google Scholar 

  • Yphantis, D. A. 1964. Equilibrium ultracentrifugation of dilute solutions. Biochemistry3: 297–317.

    Article  PubMed  CAS  Google Scholar 

  • Yoshida, J., Sugawara, T. and Hayashi, J. 1986. Changes in carbohydrates and organic acids during development of mycellium and fruit-bodies of Hiratake mushroom (Pleurotus ostreatus). Nippon Shokuhin Kogyo Gakkaishi33: 519–528. (In Japanese.)

    CAS  Google Scholar 

  • Wannet, W. J. B., Op den Camp, H. J. M., Wisselink, H. W., van der Drift, C., Van Griensven, L. J. L. D. and Vogels, G. D. 1998. Purification and characterization of Trehalose phosphorylase from a commercial mushroomAgaricus bisporus. Biochim. Biophys. Acta1425: 177–188.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Kitamoto, Y., Osaki, N., Tanaka, H. et al. Purification and properties of α-glucose 1-phosphate-forming trehalose phosphorylase from a basidiomycete,Pleurotus ostreatus . Mycoscience 41, 607–613 (2000). https://doi.org/10.1007/BF02460927

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02460927

Key Words

Navigation