Mycoscience

, Volume 38, Issue 2, pp 215–225 | Cite as

Roles of Ca2+ in hyphal and yeast-form growth inCandida albicans. Growth regulation by altered extracellular and intracellular free Ca2+ concentrations

  • Shuichi Sakaguchi
  • Kyoko Shibuya
  • Hidetoshi Iida
  • Yasuhiro Anraku
  • Takahito Suzuki
Original Papers

Abstract

The dimorphic fungusCandida albicans has both a yeast form and a hyphal form. When yeast-form cells were starved and then transferred to aN-acetylglucosamine medium, the formation of true hyphae from the unbudded yeast-form cells was induced. Removal of Ca2+ from the medium with EGTA inhibited hyphal formation by 50%, resulting in only thin and short hyphae. Externally applied excess Ca2+ (>10−2M) also affected the hyphal formation, resulting in formation of pseudohyphae. This effect required a high concentration of Ca2+ but was Ca2+-specific. Deprivation of Ca2+ also inhibited yeast-form growth. Interestingly, such cells had abnormally wide bud necks and became defective in cell separation. To measure cytosolic free Ca2+, fura-2 was introduced into hyphal cells by electroporation. Its normal value was estimated to be about 100 nM. The electroporation caused transient elevation of cytosolic free Ca2+ concentration and transient cessation of hyphal growth. There was a close correlation between the timing of recovery of Ca2+ concentration and that of the resumption of hyphal growth. Our results demonstrate the importance of extracellular and intracellular free Ca2+ for the growth ofC. albicans.

Key words

calcium ion cytokinesis fura-2 probenecid tip growth 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Beckers, C. J. M. and Balch, W. E. 1989. Calcium and GTP: Essential components in vesicular trafficking between the endoplasmic reticulum and golgi apparatus. J. Cell Biol.108: 1245–1256.PubMedCrossRefGoogle Scholar
  2. Borbolla, M. and Peña, A. 1980. Some characteristics of Ca2+ uptake by yeast cells. J. Membrane Biol.54: 149–156.CrossRefGoogle Scholar
  3. Campbell, A. K. 1983. Intracellular calcium: Its universal role as regulator. John Wiley & Sons, Chichester.Google Scholar
  4. Connor, J. A. 1986. Digital imaging of free calcium changes and of spatial gradients in growing processes in single, mammalian central nervous system cells. Proc. Natl. Acad. Sci. USA83: 6179–6183.PubMedCrossRefGoogle Scholar
  5. Gow, N. A. R. 1994. Growth and guidance of the fungal hypha. Microbiology140: 3193–3205.PubMedCrossRefGoogle Scholar
  6. Grynkiewicz, G., Poenie, M. and Tsien, R. Y. 1985. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem.260: 3440–3450.PubMedGoogle Scholar
  7. Hepler, P. K. and Wayne, R. O. 1985. Calcium and plant development. Ann. Rev. Plant Physiol.36: 397–439.Google Scholar
  8. Hilenski, L. L., Naider, F. and Becker, J. M. 1986. Polyoxin D inhibits colloidal gold-wheat germ agglutinin labelling of chitin in dimorphic forms ofCandida albicans. J. Gen. Microbiol.132: 1441–1451.PubMedGoogle Scholar
  9. Holmes, A. R., Cannon, R. D. and Shepherd, M. G. 1991. Effect of calcium ion uptake onCandida albicans morphology. FEMS Microbiol. Lett.77: 187–194.CrossRefGoogle Scholar
  10. Iida, H., Sakaguchi, S., Yagawa, Y. and Anraku, Y. 1990a. Cell cycle control by Ca2+ inSaccharomyces cerevisiae. J. Biol. Chem.265: 21216–21222.PubMedGoogle Scholar
  11. Iida, H., Yagawa, Y. and Anraku, Y. 1990b. Essential role for induced Ca2+ influx followed by [Ca2+]i rise in maintaining viability of yeast cells late in the mating pheromone response pathway. A study of [Ca2+]i in singleSaccharomyces cerevisiae cells with imaging of fura-2. J. Biol. Chem.265: 13391–13399.PubMedGoogle Scholar
  12. Jackson, S. L. and Heath, I. B. 1989. Effects of exogenous calcium ions on tip growth, intracellular calcium concentration, and actin arrays in hyphae of the fungusSaprolegnia ferax. Exp. Mycol.13: 1–12.CrossRefGoogle Scholar
  13. Jackson, S. L. and Heath, I. B. 1993. Role of calcium ions in hyphal tip growth. Microbiol. Rev.57: 367–382.PubMedGoogle Scholar
  14. Jaffe, L. F., Robinson, K. R. and Nuccitelli, R. 1974. Local cation entry and self-electrophoresis as an intracellular localization mechanism. Ann. N. Y. Acad. Sci.238: 372–389.PubMedGoogle Scholar
  15. Joersbo, M. and Brunstedt, J. 1991. Electroporation: Mechanism and transient expression, stable transformation and biological effects in plant protoplasts. Physiol. Plant.81: 256–264.CrossRefGoogle Scholar
  16. Kropf, D. L. 1992. Establishment and expression of cellular polarity in fucoid zygotes. Microbiol. Rev.56: 316–339.PubMedGoogle Scholar
  17. Kuranda, M. J. and Robbins, P. W. 1991. Chitinase is required for cell separation during growth ofSaccharomyces cerevisiae. J. Biol. Chem.266: 19758–19767.PubMedGoogle Scholar
  18. Miller, D. D., Callaham, D. A., Gross D. J. and Hepler, P. K. 1992. Free Ca2+ gradient in growing pollen tubes ofLilium. J. Cell Sci.101: 7–12.Google Scholar
  19. Monck, J. R., Oberhauser, A. F., Keating, T. J. and Fernandez, J. M. 1992. Thin-section ratiometric Ca2+ images obtained by optical sectioning of fura-2 loaded mast cells. J. Cell Biol.116: 745–759.PubMedCrossRefGoogle Scholar
  20. Odds, F. C. 1988. Morphogenesis inCandida, with special reference toC. albicans. In:Candida and candidiasis, (ed. by Odds, F. C.), pp. 42–59. Bailliere Tindal, London.Google Scholar
  21. O'Driscoll, D., Wilson, G. and Steer, M. W. 1991. Lucifer yellow and fluorescein isothiocyanate uptake by cells ofMorinda citrifolia in suspension cultures is not confined to the endocytotic pathway. J. Cell Sci.100: 237–241.Google Scholar
  22. Ogawa, Y. and Kitazawa, T. 1975. Sarcoplasmic reticulum. in: Methods in biochemistry 5, Muscle, (ed. by The Japanese Biochemical Society), pp. 315–337. Tokyo Kagaku Dojin, Tokyo. (In Japanese.)Google Scholar
  23. Oiki, S. and Okada, Y. 1987. Ca-EGTA buffer in physiological solutions. Seitai no Kagaku38: 79–83. (In Japanese.)Google Scholar
  24. Paranjape, V. and Datta, A. 1990. Role of calcium and calmodulin in morphogenesis ofCandida albicans. In: Calcium as an intracellular messenger in eucaryotic microbes, (ed. by O'Day, D. H.), pp. 362–374. Amer. Soc. Microbiol., Washington, DC.Google Scholar
  25. Paranjape, V., Roy, B. G. and Datta, A. 1990. Involvement of calcium, calmodulin and protein phosphorylation in morphogenesis ofCandida albicans. J. Gen. Microbiol.136: 2149–2154.PubMedGoogle Scholar
  26. Roy, B. G. and Datta, A. 1987. A calmodulin inhibitor blocks morphogenesis inCandida albicans. FEMS Microbiol. Lett.41: 327–329.CrossRefGoogle Scholar
  27. Sabie, F. T. and Gadd, G. M. 1989. Involvement of a Ca2+-calmodulin interaction in the yeast-mycelial (Y-M) transition ofCandida albicans. Mycopathologia108: 47–54.PubMedCrossRefGoogle Scholar
  28. Schiefelbein, J. W., Shipley, A. and Rowse, P. 1992. Calcium influx at the tip of growing root-hair cells ofArabidopsis thaliana. Planta187: 455–459.CrossRefGoogle Scholar
  29. Schmid, J. and Harold, F. M. 1988. Dual roles for calcium ions in apical growth ofNeurospora crassa. J. Gen. Microbiol.134: 2623–2631.PubMedGoogle Scholar
  30. Shepherd, M. G., Poulter, R. T. M. and Sullivan, P. A. 1985.Candida albicans: biology genetics, and pathogenicity. Ann. Rev. Microbiol.39: 579–614.CrossRefGoogle Scholar
  31. Sherman, F., Fink, G. R. and Hicks, J. B. 1986. Laboratory course manual for methods in yeast genetics, pp. 163–167. Cold Spring Harbor Laboratory, Cold Spring Harbor.Google Scholar
  32. Simonetti, N., Strippoli, V. and Cassone, A. 1974. Yeast-mycelial conversion induced byN-acetyl-d-glucosamine inCandida albicans. Nature250: 344–346.PubMedCrossRefGoogle Scholar
  33. Suzuki, T., Kanbe, T., Kuroiwa, T. and Tanaka, K. 1986. Occurrence of ploidy shift in a strain of the imperfect yeastCandida albicans. J. Gen. Microbiol.132: 443–453.PubMedGoogle Scholar
  34. Toescu, E. C., Lawrie, A. M., Petersen, O. H. and Gallacher, D. V. 1992. Spatial and temporal distribution of agonist-evoked cytoplasmic Ca2+ signals in exocrine acinar cells analysed by digital image microscopy. EMBO J.11: 1623–1629.PubMedGoogle Scholar
  35. Walker, G. M., Sullivan, P. A. and Shepherd, M. G. 1984. Magnesium and the regulation of germ-tube formation inCandida albicans. J. Gen. Microbiol.130: 1941–1945.PubMedGoogle Scholar
  36. Wright, K. M., Davies, T. G. E., Steele, S. H., Leigh, R. A. and Oparka, K. J. 1992. Development of a probenecid-sensitive lucifer yellow transport system in vacuolating oat aleurone protoplasts. J. Cell Sci.102: 133–139.Google Scholar

Copyright information

© The Mycological Society of Japan 1997

Authors and Affiliations

  • Shuichi Sakaguchi
    • 1
  • Kyoko Shibuya
    • 1
  • Hidetoshi Iida
    • 2
    • 3
  • Yasuhiro Anraku
    • 2
    • 4
  • Takahito Suzuki
    • 1
  1. 1.Department of Biological Science, Faculty of ScienceNara Women's UniversityNaraJapan
  2. 2.Division of Cell ProliferationNational Institute for Basic BiologyOkazakiJapan
  3. 3.Department of BiologyTokyo Gakugei UniversityKoganelJapan
  4. 4.Department of Plant Sciences, Graduate School of ScienceUniversity of TokyoTokyoJapan

Personalised recommendations