Skip to main content
Log in

Experimental determination and mathematical model of the transient incorporation of cholesterol in the arterial wall

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Experimental data of the radial incorporation of labeled cholesterol [14C-4] into the artery wall is regressed against a mathematical model that predicts macromolecular transport in this biological system. Data is obtained using excised canine carotid arteries that are perfusedin vitro under pulsatile hemodynamic conditions for 2 hr. Vessels are exposed to either normotensive hemodynamics, hypertensive hemodynamics, or simulations in which the rate of flow or vessel compliance is deliberately altered. Several arteries are studied under normotensive conditions following balloon catheter deendothelialization. Transmural concentration profiles of [14C-4] activity are determined by microcryotomy of longitudinal sections of perfused vessels. Nonlinear Marquardt regression on 12 experimental cases yields parameter estimates of effective diffusivity,D and solute filtration velocity,V. Results of this experimental investigation support our hypothesis that hemodynamics and the endothelial lining influence wall flux in intact vessels. Exposure to altered (vs normotensive) hemodynamics is associated with increased incorporation of labeled cholesterol. A similar observation is made for deendothelialized vessels (e.g. a greater accumulation of label and a rise in convective flux). Based upon our companion measurements of vessel wall forces and endothelial cellular morphology accompanying hemodynamic simulations, we suggest that hemodynamically induced alterations to endothelial structures lead to the increased permeability, convection and incorporation that we observe in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Barja, F., M. Blatter, R. W. James, D. Pometta and G. Gabbiani. 1989. Actin stress fiber content of regenerated endothelial cells correlate with intramural retention of intermediate plus low density lipoproteins in rat aorta after balloon injury.Atherosclerosis 76, 181–191.

    Article  Google Scholar 

  • Brant, A. M., J. F. Chmielewski, T. K. Hung and H. S. Borovetz. 1986. Simulationin vitro of pulsatile vascular hemodynamics using a CAD/CAM designed cam disc and roller follower.Artif. Organs 10, 419–421.

    Article  Google Scholar 

  • Brant, A. M., M. F. Teodori, R. L. Kormos and H. S. Borovetz. 1987. Effect of variations in pressure and flow on the geometry of isolated canine carotid arteries.J. Biomechanics 20, 831–838.

    Article  Google Scholar 

  • Brant, A. M., S. S. Shah, V. G. J. Rodgers, J. Hoffmeister, I. M. Herman, R. L. Kormos and H. S. Borovetz. 1988. Biomechanics of the arterial wall under simulated flow conditions.J. Biomechanics 21, 107–113.

    Article  Google Scholar 

  • Brant, A. M. and H. S. Borovetz. 1987. Hemodynamic and mass transfer aspects of arterial disese. InArtificial Organs, J. D. Andradeet al. (eds.) New York: VCH.

    Google Scholar 

  • Bratzler, R. L., C. K. Colton and K. A. Smith. 1977. Endothelium and permeability: theoretical models for transport of low-density lipoproteins in the arterial wall. InAtherosclerosis, G. W. Manning and M. Daria-Haust (eds) pp. 943–951. New York, Plenum.

    Google Scholar 

  • Bratzler, R. L. 1975. Low density lipoprotein transport and metabolism in the arterial wall. Ph.D. thesis, Massachusetts Institute of Technology.

  • Burton, A. C. 1954. Relation of structure to function of the tissues of the wall of blood vessels.Physiol. Rev. 34, 619–642.

    Google Scholar 

  • Carew, T. E., R. C. Pittman, E. R. Marchand and D. Steinberg. 1984. Measurementin vivo of irreversible degradation of low density lipoprotein in the rabbit aorta: predominance of intimal degradation.Arteriosclerosis 4, 214–224.

    Google Scholar 

  • Carnahan, B., H. A. Luther and J. O. Wilkes. 1969.Applied Numerical Methods. New York: Wiley.

    MATH  Google Scholar 

  • Caro, C. G., M. J. Lever, Z. Laver-Rudich, F. Meyer, N. Liron, W. Ebel, K. H. Parker and C. P. Winlove. 1980. Net albumin transport across the wall of the rabbit common carotid artery perfusedin situ.Atherosclerosis 37, 497–511.

    Article  Google Scholar 

  • Colton C. K., R. L. Bratzler, K. A. Smith and R. S. Lees 1979. Transport of protein and lipid into the arterial wall.Adv. Exp. Med. Biol. 115, 299–352.

    Google Scholar 

  • Curmi, P. A. and A. Tedgui. 1989. Effect of transmural pressure on the transport and distribution of low density lipoproteins in the arterial wall.C. r. Acad. Sci. (III) 308 149–154.

    Google Scholar 

  • Frank, P. M. 1978.Introduction to System Sensitivity Theory. New York: Academic Press.

    MATH  Google Scholar 

  • Friedman, M. H., G. M. Hutchins, C. B. Bargeron, O. J. Deters and F. M. Mark. 1981. Correlation between intimal thickness and fluid shear in human arteries.Atherosclerosis 39, 425–436.

    Article  Google Scholar 

  • Fry, D. L. 1985. Mathematical model of arterial transmural transport.Am. J. Physiol. 248, H240-H263.

    Google Scholar 

  • Fry, D. L. 1987. Mass transport, atherogenesis and risk.Arteriosclerosis,7, 88–100.

    Google Scholar 

  • Glagov, S., C. Zarins, D. P. Giddens and D. N. Ku. 1988. Hemodynamics and atherosclerosis.Arch. Pathol. Lab. Med. 112, 1018–1031.

    Google Scholar 

  • Herman, I. M., A. M. Brant, V. S. Warty, J. Bonaccoroso, E. C. Klein, R. L. Kormos and H. S. Borovetz. 1987. Hemodynamics and the vascular endothelial cytoskeleton.J. Cell Biology 105, 291–302.

    Article  Google Scholar 

  • Johnson, G. A., T. K. Hung, A. M. Brant and H. S. Borovetz. 1989. Experimental determination of wall shear rate in canine carotid arteries perfusedin vitro.J. Biomechanics 22, 1141–1150.

    Article  Google Scholar 

  • Ku, D. N., D. P. Giddens, C. K. Zarins and S. Glagov. 1985. Pulsatile flow and atherosclerosis in the human carotid bifurcation.Arteriosclerosis,5, 293–302.

    Google Scholar 

  • Marquardt, D. W. 1963. An algorithm for least-squared estimation of non-linear parameters.SIAM J. 11, 431–440.

    MATH  MathSciNet  Google Scholar 

  • Melissinos, A. C. 1966.Experiments in Modern Physics. New York: Academic Press.

    Google Scholar 

  • Nerem, R. M. and M. J. Levesque. 1987. Hemodynamics and the arterial wall. InVascular Diseases. New York: Grune and Stratton.

    Google Scholar 

  • Neumann, S. J. 1987. Application of a mathematical model to experimental data of arterial wall transport. Master's thesis, Carnegie Mellon University.

  • Pittman, R. C., T. E. Carew, C. K. Glass, S. R. Green, C. A. Taylor and A. D. Attie. 1983. A radioiodinated intracellularly trapped ligand for determining the sites of plasma protein degradationin vivo.Biochemistry J. 212, 791–800.

    Google Scholar 

  • Ross, R. 1986. The pathogenesis of atherosclerosis—an update.New Engl. J. Med. 314, 488–500.

    Article  Google Scholar 

  • Saidel, G. M., E. D. Morris and G. M. Chisolm. 1987. Transport of macromolecules in arterial wallin vivo: a mathematical model and analytical solutions.Bull. math. Biol. 49, 153–169.

    Article  MATH  Google Scholar 

  • Sevick, E. M. 1985. Mathematical model of arterial macromolecular transport: application to experimental studies of cholesterol uptake. Master's thesis, University of Pittsburgh.

  • Smith, E. B. and R. Slater. 1970. The chemical and immunological assay of low density lipoproteins extracted from human thoracic aortic intima.Atherosclerosis 11, 417–438.

    Article  Google Scholar 

  • Smith, E. B. and E. M. Staples. 1982. Plasma protein concentrations in interstitial fluid from human aortas.Proc. R. Soc. Lond. B217, 59–75.

    Article  Google Scholar 

  • Tedgui, A. and M. J. Lever. 1985. The interaction of convection and diffusion in the transport of131I-albumin within the rabbit thoracic aorta.Circ. Res. 57, 856–863.

    Google Scholar 

  • Tompkins, R. G., J. J. Schnitzer, M. L. Yarmush, C. K. Colton, K. A. Smith and M. B. Stemerman. 1989. Low density lipoprotein transport in the blood vessel walls of the squirrel monkey.Am. J. Physiol. 257 (Heart Circ. Physiol.,26) H452-H464.

    Google Scholar 

  • Truskey, G. A., C. K. Colton and K. A. Smith. 1981. Quantitative analysis of protein transport in the arterial wall. InStructure and Function of the Circulation, Vol. 3, C. J. Schwartz, N. T. Werthessen and S. Wolf (eds), pp. 287–355. New York: Plenum.

    Google Scholar 

  • Tzeghai, G., P. Ganatos, R. Pfeffer, S. Weinbaum and A. Nir. 1986. A theoretical model to study the effect of convection and leaky junctions on macromolecule transport in artery walls.J. theor. Biol. 121, 141–162.

    Article  Google Scholar 

  • Weinbaum, S., G. Tzeghai, P. Ganatos, R. Pfeffer and S. Chien. 1985. Effect of cell turnover and leaky junctions on arterial macromolecular transport.Am. J. Physiol. 248, H945-H960.

    Google Scholar 

  • Wen G. B., S. Weinbaum, P. Ganatos, R. Pfeffer and S. Chien. 1988. On the time dependent diffusion of macromolecules through transient open junctions and their sub-endothelial spread. 2. Long time model for interaction between leakage sites.J. theor. Biol. 135, 219–253.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neumann, S.J., Berceli, S.A., Sevick, E.M. et al. Experimental determination and mathematical model of the transient incorporation of cholesterol in the arterial wall. Bltn Mathcal Biology 52, 711–732 (1990). https://doi.org/10.1007/BF02460805

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02460805

Keywords

Navigation