Bulletin of Mathematical Biology

, Volume 40, Issue 5, pp 605–623 | Cite as

Distributed sensory coding applied to simulations of iconic storage and metacontrast

  • Bruce Bridgeman


If information is coded in the combination of activities of many neurons operating in parallel, then information present in a network can be defined by the correlation of present network activity with the activity which had been elicited by a stimulus in the past; a high correlation indicates the presence of the previously encoded stimulus. Information is distributed in the network because coding is dependent upon the activities of all cells. A model based on Hartline-Ratliff lateral inhibition with a time delay shows that lateral inhibition can distribute information across a parallel network, reduce output noise, and also briefly store information. With no changes in model parameters, and the use of a correlation measure for recognition, the model can stimulate psychophysical results in eleven variations of the metacontrast masking paradigm.


Lateral Inhibition Lateral Geniculate Nucleus Energy Ratio Visual Masking Visual Code 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alpern, M. 1953. “Metacontrast.”J. Opt. Soc. America,43, 648–657.CrossRefGoogle Scholar
  2. Bell, H. H. and J. S. Lappin. 1973. “Sufficient Conditions for the Discrimination of Motion.”Percept. Psychophys. 14, 45–50.Google Scholar
  3. Benevento, L. A., O.-D. Creutzfeldt and U. Kuhnt. 1972. “Significance of Intracortical Inhibition in the Visual Cortex.”Nature, Lond.,238, 124–126.CrossRefGoogle Scholar
  4. Blakemore, C. and F. W. Campbell. 1969. “On the Existence of Neurons in the Human Visual System Selectively Sensitive to the Orientation and Size of Retinal Images.”J. Physiol.,203, 237–260.Google Scholar
  5. Breitmeyer, B. G. and L. Ganz. 1976. “Implications of Sustained and Transient Channels for Theories of Visual Pattern Masking, Saccadic Suppression, and Information Processing.”Psychol. Rev.,83, 1–36.CrossRefGoogle Scholar
  6. Bridgeman, B. 1971. “Metacontrast and Lateral Inhibition.”Psychol. Rev.,78, 528–539.CrossRefGoogle Scholar
  7. —. 1972. “Lateral Interactions and Visual Coding.” Unpublished doctoral dissertation, Stanford University, 1971.Dissert. Abst.,326, 7333.Google Scholar
  8. —. 1975a. “Beyond Feature Detectors.”Proceedings of the 1975 International Conference on Cybenetics and Society. New York: The Institute of Electrical and Electronics Engineers, Inc., pp. 108–109.Google Scholar
  9. — 1975b. “Correlates of Metacontrasts in Single Cells of the Cat Visual System.”Vision Res.,15, 91–99.CrossRefGoogle Scholar
  10. —. 1977. “A Correlational Model Applied to Metacontrast: Reply to Weisstein, Ozog and Szoc.”Bull. Psychonomic Soc.,10, 85–88.Google Scholar
  11. Burke, W. and A. Sefton. 1966a. “Discharge Patterns of Principal Cells and Interneurons in Lateral Geniculate Nucleus of Rat.”J. Physiol.,187, 201–212.Google Scholar
  12. — and —. 1966b. “Recovery of Responsiveness of Cells of Lateral Geniculate Nucleus.”J. Physiol.,187, 213–229.Google Scholar
  13. — and —. 1966c. “Inhibitory Mechanisms in Lateral Geniculate Nucleus of Rat.”J. Physiol.,187, 231–246.Google Scholar
  14. Campbell, F. W. and J. G. Robson. 1968. “Application of Fourier Analysis to the Visibility of Gratings.”J. Physiol.,197, 551–566.Google Scholar
  15. Creutzfeldt, O.-D., G. Baumgartner and L. Schön. 1956. “Reaktionen Einzelner Neurone des Sensomotorischen Cortex nach Elektrischen Reizen.”Arch. Psychiat. Nervenkrankheiten,194, 597–619.CrossRefGoogle Scholar
  16. Fehrer, E. and E. Smith. 1962. “Effect of Luminance Ratio on Masking.”Percept. Motor Skills,14, 243–253.CrossRefGoogle Scholar
  17. Growney, R. 1976. “The Function of Contour in Metacontrast.”Vision Res.,16, 253–261.CrossRefGoogle Scholar
  18. Haber, R. N. and L. Standing. 1970. “Direct Estimates of apparent Duration of a Flash Followed by Visual Noise.”Can. J. Psychol.,24, 216–229.Google Scholar
  19. Hays, W. L. 1963.Statistics for Psychologists. New York: Holt, Rinehart and Winston.Google Scholar
  20. Julesz, B. 1971.Foundations of Cyclopean Perception. Chicago: University of Chicago Press.Google Scholar
  21. Kahneman, D., “Methods, Findings, and Theory in Studies of Visual Masking.”Psychol. Bull.,70, 404–425.Google Scholar
  22. Kalil, R. and R. Chase. 1970. “Corticofugal Influence on Activity of Lateral Geniculate Neurons in the Cat.”J. Neurophysiol.,33, 459–474.Google Scholar
  23. Kolers, P. A. 1962. “Intensity and Contour Effects in Visual Masking.”Vision Res.,2, 277–294.CrossRefGoogle Scholar
  24. Knuth, D. 1969.The Art of Computer Programming, V. 2: Seminumerical Algorithms. Reading, Mass.: Adison Wesley.Google Scholar
  25. Krnjevic, J., M. Randic and D. Straughan. 1964. “Cortical Inhibition.”Nature, Lond.,201, 1294–1296.CrossRefGoogle Scholar
  26. Lappin, J. S. and H. H. Bell. 1976. “The Detection of Coherence in Moving Random-Dot Patterns.”Vision Res.,16, 161–168.CrossRefGoogle Scholar
  27. Lefton, L. A. 1973. “Metacontrast: A review.”Percept. Psychophys.,13, 161–171.Google Scholar
  28. Maffei, L. and A. Fiorentini. 1973. “The Visual Cortex as a Spatial Frequency Analyzer.”Vision Res.,13, 1255–1267.CrossRefGoogle Scholar
  29. Matin, E. 1975. “The Two-Transient (Masking) Paradigm.”Psychol. Rev.,82, 451–461.CrossRefGoogle Scholar
  30. Mayzner, M. S., M. H. Blatt, W. H. Buchsbaum, R. T. Friedel, P. E. Goodwin, D. Kanon, A. Keleman and W. Nilsson. 1965. “A U-Shaped Backward Masking Function in Vision: A Partial Replication of the Weisstein and Haber Study with Two Ring Sizes.”Psychonomic Sci.,3, 79–80.Google Scholar
  31. Neisser, U. 1967.Cognitive Psychology. New York: Appleton-Century-Crofts.Google Scholar
  32. Ratliff, F. 1965.Mach Bands: Quantitative Studies on Neural Networks in the Retina. San Francisco: Holden-Day.Google Scholar
  33. Schiller, P. H. and A. Greenfield. 1969. “Visual Masking and the Recovery Phenomenon.”Percept. Psychophys.,6, 182–184.Google Scholar
  34. — and M. Smith. 1966. “Detection in Metacontrast.”J. Exp. Psychol.,71, 32–46.CrossRefGoogle Scholar
  35. — and —. 1968. “Monoptic and Dichoptic Metacontrast.”Percept. Psychophys.,3, 237–239.Google Scholar
  36. Sherrick, M. F., J. K. Keating and W. N. Dember. 1974. “Metacontrast with Black and WhiteGoogle Scholar
  37. — and —. 1968. “Monoptic and Dichoptic Metacontrast.”Percept. Psychophys.,3, 237–239.Google Scholar
  38. Stimuli.”Can. J. Psychol.,28, 439–445.Google Scholar
  39. Singer, W. and O.-D. Creutzfeldt. 1970. “Reciprocao Lateral Inhibition of On- and Off-Center Neurones in the Lateral Geniculate Body of the Cat.”Exp. Brain Res.,10, 311–330.CrossRefGoogle Scholar
  40. Sperling, G. 1963. “A Model for Visual Memory Tasks.”Human Factors,5, 19–31.Google Scholar
  41. Spekreijse, H., L. H. Van der Tweel and Th. Zuidema. 1973. “Contrast Evoked Responses in Man.”Vision Res.,13, 1577–1601.CrossRefGoogle Scholar
  42. Spinelli, D. N. and T. W. Barrett. 1969. “Visual Receptive Field Organization of Single Units in the Cat's Visual Cortex.”Exp. Neurol.,24, 76–98.CrossRefGoogle Scholar
  43. Uttal, W. R. 1973.The Psychobiology of Sensory Coding. New York: Harper and Row.Google Scholar
  44. Vaughan Jr., H. G. and L. Silverstein. 1968. “Metacontrast and Evoked Potentials: A Reappraisal.”Science 160, 207–208.Google Scholar
  45. Weisstein, N. 1968. “A Rashevsky-Landahl Neural Net: Simulation of Metaconstrast.”Psychol. Rev.,75, 494–521.CrossRefGoogle Scholar
  46. —. 1971. “W-Shaped and U-Shaped Functions Obtained for Monoptic and Dichoptic Disk-Disk Masking.”Percept. Psychophys.,9, 275–278.Google Scholar
  47. —. 1972. “Metacontrast.” InHandbook of Sensory Physiology. D. Jameson and L. M. Hurvich (eds.). (Vol. 7/4,Visual Psychophysics). New York: Springer-Verlag.Google Scholar
  48. —, G. Ozog and R. Szoc. 1975. “A Comparison and Elaboration of Two Models of Metacontrast.”Psychol. Rev.,82, 325–343.CrossRefGoogle Scholar
  49. Wilson, H. R. and J. D. Cowan. 1973. “A Mathematical Theory of the Functional Dynamics of Cortical and Thalmic Nervous Tissue.”Kybernetik,13, 55–80.MATHCrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 1978

Authors and Affiliations

  • Bruce Bridgeman
    • 1
  1. 1.Psychology Board of StudiesUniversity of CaliforniaSanta CruzU.S.A.

Personalised recommendations