Bulletin of Mathematical Biology

, Volume 56, Issue 4, pp 687–721 | Cite as

Reverse engineering: A model for T-cell vaccination

  • Lee A. Segel
  • Eva Jäger
Article

Abstract

A class of minimal models is constructed that can exhibit several salient phenomena associated with T-cell inoculations that prevent and cure autoimmune disease. The models consist of differential equations for the magnitude of two populations, the effectorsE (which cause the disease), and an interacting regulator populationR. In these models, normality, vaccination and disease are identified with stable steady-states of the differential equations. Thereby accommodated by the models are a variety of findings such as the induction of vaccination or disease, depending on the size of the effector inoculant. Features such as spontaneous acquisition of disease and spontaneous cure require that the models be expanded to permit slow variation of their coefficients and hence slow shifts in the number of steady-states. Other extensions of the basic models permit them to be relevant to vaccination by killed cells or by antigen, or to the interaction of a larger number of cell types. The discussion includes an indication of how the highly simplified approach taken here can serve as a first step in a modeling program that takes increasing cognizance of relevant aspects of known immunological physiology. Even at its present stage, the theory leads to several suggestions for experiments.

Keywords

Experimental Autoimmune Encephalomyelitis Effector Cell Effector Population Minimal Model Phase Plane 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. Alborán, M. D., J. C. Gutierrez, J. A. Gonzalo, J. L. Andreu, M. A. R. Marcos, G. Kroemer and C. Martinez-A. 1992. lpr T-cells vaccinate against lupus in MRL/lpr mice.Eur. J. Immunol. 22, 1089–1093.Google Scholar
  2. Av-Ron, E., H. Parnas and L. A. Segel. 1993. A basic biophysical model for bursting neurons.Biol. Cybern. 69, 87–95.CrossRefGoogle Scholar
  3. Ben-Nun, A., H. Wekerle and I. R. Cohen. 1981. Vaccination against autoimmune encephalomyelitis with T lymphocyte line cells reactive against myelin basic protein.Nature 292, 60–61.CrossRefGoogle Scholar
  4. Beraud, E., O. Lider, E. Baharav, T. Reshef and I. R. Cohen. 1989. Vaccination against experimental autoimmune encephalomyelitis using a subencephalitogenic dose of autoimmune effector cells. I. Characteristics of vaccination.J. Autoimmun. 2, 75–86.CrossRefGoogle Scholar
  5. Cohen, I. R. 1986. Regulation of autoimmune disease: physiological and therapeutic.Immunol. Rev. 94, 5–21.CrossRefGoogle Scholar
  6. Cohen, I. R. 1988.Perspectives on Autoimmunity. Boca Raton, FL: CRC Press.Google Scholar
  7. Cohen, I. R. and H. Atlan. 1989. Network regulation of autoimmunity: an automaton model.J. Autoimmun. 2, 613–625.Google Scholar
  8. de Boer, R. J., L. A. Segel and A. S. Perelson. 1992. Pattern formation in one-and two-dimensional shape space models of the immune system.J. theor. Biol. 155, 295–333.CrossRefGoogle Scholar
  9. Doya, K. and S. Yoshizawa. 1989. Adaptive neural oscillator using continuous-time back-propagation learning.Neural Networks 2, 375–385.CrossRefGoogle Scholar
  10. Elias, D., T. Reshef, O. S. Birk, R. van der Zee, M. D. Walker and I. R. Cohen. 1991. Vaccination against autoimmune mouse diabetes with a T-cell epitope of the human 65-kDa heat shock protein.Proc. natn. Acad. Sci. U.S.A. 88, 4577–4580.CrossRefGoogle Scholar
  11. Howell, M. D., S. T. Winters, T. Olee, H. C. Powell, D. J. Carlo and S. W. Brostoff. 1989. Vaccination against experimental allergic encephalomyelitis with T-cell receptor peptides.Science 246, 668–670.Google Scholar
  12. Kumar, V. and E. E. Sercarz. 1992. T cell regulatory circuitry: antigen-specific and TCR-idiopeptide-specific T cell interactions in EAE.Int. Rev. Immunol. 9, 269–279.Google Scholar
  13. Kumar, V. and E. E. Sercarz. 1993. TCR-peptide-specific regulatory CD4+ T cells are involved in recovery from antigen-induced autoimmune disease.178, 909–916.Google Scholar
  14. Lider, O., M. Shinitzky and I. R. Cohen. 1986. Vaccination against experimental autoimmune diseases using T lymphocytes treated with hydrostatic pressure.Ann. N. Y. Acad. Sci. 475, 267–273.Google Scholar
  15. Lohse, A. W., T. W. Spahn, T. Wölfel, J. Herkel, I. R. Cohen and K. H. Meyer zum Büschenfelde. 1993. Induction of the anti-ergotypic response.Int. Immunol. 5, 533–539.Google Scholar
  16. Naparstek, Y., A. Ben-Nun, J. Holoshitz, T. Reshef, A. Frenkel, M. Rosenberg and I. R. Cohen. 1983. T lymphocyte lines producing or vaccinating against autoimmune encephalomyelitis (EAE): functional activation induces PNA receptors and accumulation in the brain and thymus of line cells.Eur. J. Immunol. 13, 418–423.Google Scholar
  17. Odell, G., G. Oster, P. Alberch and B. Burnside. 1981. The mechanical basis of morphogenesis. I. Epithelial folding and invagination.Dev. Biol. 85, 446–462.CrossRefGoogle Scholar
  18. Offner, H., G. A. Hashim and A. A. Vandenbark. 1991. T-cell receptor peptide therapy triggers autoregulation of experimental encephalomyelitis.Science 251, 430–432.Google Scholar
  19. Raine, C. S. 1984. Biology of disease. Analysis of autoimmune demyelination: its impact upon multiple sclerosis.Lab. Invest. 50, 608–635.Google Scholar
  20. Rauch, J. G. 1993. The law on reverse engineering.IEEE Spectrum 30, 47–48.CrossRefGoogle Scholar
  21. Rinzel, J. 1987. A formal classification of bursting mechanisms in excitable systems. InMathematical Topics in Population Biology. Morphogenesis and Neurosciences, E. Teramoto and M. Yamaguti (Eds), Lecture Notes in Biomathematics, Vol. 71, pp. 267–281. Berlin: Springer.Google Scholar
  22. Segel, L. A. and E. Jäger. 1994. T-cell vaccination via reverse engineering: transient disease.Proceedings of the Second European Conference on Mathematics Applied to Biology and Medicine. P. Auger and J. Demongeot (Eds).Google Scholar
  23. Segel, L. A. and M. Slemrod. 1989. The quasi-steady state assumption: a case study in perturbation.SIAM Rev. 31, 446–447.MATHMathSciNetCrossRefGoogle Scholar
  24. Segel, L. A., E. Jäger, D. Elias and I. R. Cohen. 1994. A quantitative model of autoimmune disease and T cell vaccination: why more cells may produce less effect. Unpublished.Google Scholar
  25. Wiegand, A. S. and N. A. Gershenfeld (Eds). 1993.Time Series Prediction: Forecasting the Future and Understanding the Past. Reading, MA: Addison-Wesley.Google Scholar

Copyright information

© Society for Mathematical Biology 1994

Authors and Affiliations

  • Lee A. Segel
    • 1
  • Eva Jäger
    • 1
  1. 1.Department of Applied Mathematics and Computer ScienceWeizmann Institute of ScienceRehovotIsrael

Personalised recommendations