Skip to main content
Log in

Reverse engineering: A model for T-cell vaccination

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

A class of minimal models is constructed that can exhibit several salient phenomena associated with T-cell inoculations that prevent and cure autoimmune disease. The models consist of differential equations for the magnitude of two populations, the effectorsE (which cause the disease), and an interacting regulator populationR. In these models, normality, vaccination and disease are identified with stable steady-states of the differential equations. Thereby accommodated by the models are a variety of findings such as the induction of vaccination or disease, depending on the size of the effector inoculant. Features such as spontaneous acquisition of disease and spontaneous cure require that the models be expanded to permit slow variation of their coefficients and hence slow shifts in the number of steady-states. Other extensions of the basic models permit them to be relevant to vaccination by killed cells or by antigen, or to the interaction of a larger number of cell types. The discussion includes an indication of how the highly simplified approach taken here can serve as a first step in a modeling program that takes increasing cognizance of relevant aspects of known immunological physiology. Even at its present stage, the theory leads to several suggestions for experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Alborán, M. D., J. C. Gutierrez, J. A. Gonzalo, J. L. Andreu, M. A. R. Marcos, G. Kroemer and C. Martinez-A. 1992. lpr T-cells vaccinate against lupus in MRL/lpr mice.Eur. J. Immunol. 22, 1089–1093.

    Google Scholar 

  • Av-Ron, E., H. Parnas and L. A. Segel. 1993. A basic biophysical model for bursting neurons.Biol. Cybern. 69, 87–95.

    Article  Google Scholar 

  • Ben-Nun, A., H. Wekerle and I. R. Cohen. 1981. Vaccination against autoimmune encephalomyelitis with T lymphocyte line cells reactive against myelin basic protein.Nature 292, 60–61.

    Article  Google Scholar 

  • Beraud, E., O. Lider, E. Baharav, T. Reshef and I. R. Cohen. 1989. Vaccination against experimental autoimmune encephalomyelitis using a subencephalitogenic dose of autoimmune effector cells. I. Characteristics of vaccination.J. Autoimmun. 2, 75–86.

    Article  Google Scholar 

  • Cohen, I. R. 1986. Regulation of autoimmune disease: physiological and therapeutic.Immunol. Rev. 94, 5–21.

    Article  Google Scholar 

  • Cohen, I. R. 1988.Perspectives on Autoimmunity. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Cohen, I. R. and H. Atlan. 1989. Network regulation of autoimmunity: an automaton model.J. Autoimmun. 2, 613–625.

    Google Scholar 

  • de Boer, R. J., L. A. Segel and A. S. Perelson. 1992. Pattern formation in one-and two-dimensional shape space models of the immune system.J. theor. Biol. 155, 295–333.

    Article  Google Scholar 

  • Doya, K. and S. Yoshizawa. 1989. Adaptive neural oscillator using continuous-time back-propagation learning.Neural Networks 2, 375–385.

    Article  Google Scholar 

  • Elias, D., T. Reshef, O. S. Birk, R. van der Zee, M. D. Walker and I. R. Cohen. 1991. Vaccination against autoimmune mouse diabetes with a T-cell epitope of the human 65-kDa heat shock protein.Proc. natn. Acad. Sci. U.S.A. 88, 4577–4580.

    Article  Google Scholar 

  • Howell, M. D., S. T. Winters, T. Olee, H. C. Powell, D. J. Carlo and S. W. Brostoff. 1989. Vaccination against experimental allergic encephalomyelitis with T-cell receptor peptides.Science 246, 668–670.

    Google Scholar 

  • Kumar, V. and E. E. Sercarz. 1992. T cell regulatory circuitry: antigen-specific and TCR-idiopeptide-specific T cell interactions in EAE.Int. Rev. Immunol. 9, 269–279.

    Google Scholar 

  • Kumar, V. and E. E. Sercarz. 1993. TCR-peptide-specific regulatory CD4+ T cells are involved in recovery from antigen-induced autoimmune disease.178, 909–916.

    Google Scholar 

  • Lider, O., M. Shinitzky and I. R. Cohen. 1986. Vaccination against experimental autoimmune diseases using T lymphocytes treated with hydrostatic pressure.Ann. N. Y. Acad. Sci. 475, 267–273.

    Google Scholar 

  • Lohse, A. W., T. W. Spahn, T. Wölfel, J. Herkel, I. R. Cohen and K. H. Meyer zum Büschenfelde. 1993. Induction of the anti-ergotypic response.Int. Immunol. 5, 533–539.

    Google Scholar 

  • Naparstek, Y., A. Ben-Nun, J. Holoshitz, T. Reshef, A. Frenkel, M. Rosenberg and I. R. Cohen. 1983. T lymphocyte lines producing or vaccinating against autoimmune encephalomyelitis (EAE): functional activation induces PNA receptors and accumulation in the brain and thymus of line cells.Eur. J. Immunol. 13, 418–423.

    Google Scholar 

  • Odell, G., G. Oster, P. Alberch and B. Burnside. 1981. The mechanical basis of morphogenesis. I. Epithelial folding and invagination.Dev. Biol. 85, 446–462.

    Article  Google Scholar 

  • Offner, H., G. A. Hashim and A. A. Vandenbark. 1991. T-cell receptor peptide therapy triggers autoregulation of experimental encephalomyelitis.Science 251, 430–432.

    Google Scholar 

  • Raine, C. S. 1984. Biology of disease. Analysis of autoimmune demyelination: its impact upon multiple sclerosis.Lab. Invest. 50, 608–635.

    Google Scholar 

  • Rauch, J. G. 1993. The law on reverse engineering.IEEE Spectrum 30, 47–48.

    Article  Google Scholar 

  • Rinzel, J. 1987. A formal classification of bursting mechanisms in excitable systems. InMathematical Topics in Population Biology. Morphogenesis and Neurosciences, E. Teramoto and M. Yamaguti (Eds), Lecture Notes in Biomathematics, Vol. 71, pp. 267–281. Berlin: Springer.

    Google Scholar 

  • Segel, L. A. and E. Jäger. 1994. T-cell vaccination via reverse engineering: transient disease.Proceedings of the Second European Conference on Mathematics Applied to Biology and Medicine. P. Auger and J. Demongeot (Eds).

  • Segel, L. A. and M. Slemrod. 1989. The quasi-steady state assumption: a case study in perturbation.SIAM Rev. 31, 446–447.

    Article  MATH  MathSciNet  Google Scholar 

  • Segel, L. A., E. Jäger, D. Elias and I. R. Cohen. 1994. A quantitative model of autoimmune disease and T cell vaccination: why more cells may produce less effect. Unpublished.

  • Wiegand, A. S. and N. A. Gershenfeld (Eds). 1993.Time Series Prediction: Forecasting the Future and Understanding the Past. Reading, MA: Addison-Wesley.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Segel, L.A., Jäger, E. Reverse engineering: A model for T-cell vaccination. Bltn Mathcal Biology 56, 687–721 (1994). https://doi.org/10.1007/BF02460717

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02460717

Keywords

Navigation