Advertisement

Bifurcation of the Hodgkin and Huxley equations: A new twist

  • J. Guckenheimer
  • J. S. Labouriau
Article

Abstract

The Hodgkin and Huxley equations model action potentials in squid giant axons. Variants of these equations are used in most models for electrial activity of excitable membranes. Computational tools based upon the theory of nonlinear dynamical systems are used here to illustrate how the dynamical behavior of the Hodgkin Huxley model changes as functions of two of the system parameters.

Keywords

Periodic Orbit Equilibrium Point Hopf Bifurcation Phase Portrait Bifurcation Diagram 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Literature

  1. Back, A., J. Guckenheimer, M. Myers, F. Wicklin and P. Worfolk. 1992. dstool: Computer Assisted Exploration of Dynamical Systems, Notices of the American Mathematical Society, Vol. 39, pp. 303–309.Google Scholar
  2. Bogdanov, R. I. Trudi Sem. Petrovsk. 2. 1976. English translation: Versal deformation of a singularity of a vector field on the plane in the case of zero eigenvalue,Sel. math. Sov.1, 389–421.Google Scholar
  3. Chow, S. N., B. Deng and B. Fiedler. 1988.Homoclinic Bifurcation at Resonant Eigenvalues. Knorad-Zuse-Zentrum für Informationstechnik, F.R.G. Preprint SC-88-10.Google Scholar
  4. Dangelmayr, G. and J. Guckenheimer. 1987. On a four parameter family of planar vector fields,Arch. Rat. Mech. Anal., 321–352.Google Scholar
  5. Dumortier, F., R. Roussarie and J. Sotomayor. 1987.Generic 3-parameter families of vector fields on the plane, unfolding a singularity with nilpotent linear part. The cusp case of codimension 3. In:Ergodic Theory and Dynamical Systems, Vol. 7, pp. 375–413.Google Scholar
  6. Fitzhugh, R. 1961. Impulses and physiological states in models of nerve membranes,Biophys. J. 1, 445–466.CrossRefGoogle Scholar
  7. Golubitsky, M. and D. G. Schaeffer. 1985.Singularities and Groups in Bifurcation Theory, Vol. I. Berlin: Springer-Verlag.MATHGoogle Scholar
  8. Guckenheimer, J. 1986. Multiple bifurcation problems for chemical reactions,Physica 20D, 1–20.MathSciNetGoogle Scholar
  9. Guckenheimer, J. and P. Holmes. 1983.Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields (Berlin: Springer-Verlag.MATHGoogle Scholar
  10. Guckenheimer, J. and S. Kim. 1990.kaos Mathematical Sciences Institute Technical Report. Cornell University, Ithaca NY.Google Scholar
  11. Guckenheimer, J., S. Gueron and R. M. Harris-Warrick. 1993. Mapping the dynamics of a bursting neuron,Phil. Trans. Roy. Soc. Lond. (in press).Google Scholar
  12. Guttman, R., S. Lewis and J. Rinzel. 1980. Control of repetitive firing in squid giant axon as a model for a neuroneoscillator.J. Physiol. 305, 377–395.Google Scholar
  13. Hassard, B. D. and L. J. Shiau. 1987. Isolated periodic solutions of the Hodgkin-Huxley model nerve conduction equations. Preprint. Department of Mathematics, SUNY at Buffalo.Google Scholar
  14. Hille, B. 1992.Ionic Channels of Excitable Membranes, Sinauer.Google Scholar
  15. Hodgkin, A. L. and A. F. Huxley. 1952(a). Current carried by sodium and potassium ions through the membrane of the giant axon of Loligo.J. Physiol. 116, 449–4723.Google Scholar
  16. Hodgkin, A. L. and A. F. Huxley. 1952(b). A quantative description of membrane current and its applications to conduction and excitation in nerve.J. Physiol. 117, 500–544.Google Scholar
  17. Holden, A. V., M. A. Muhamad and A. K. Schierwagen. 1985. Repolarizing currents and periodic activity in nerve membrane.J. theoret. Neurobiol. 4, 61–71.Google Scholar
  18. Jack, J. J. B., D. Noble and R. W. Tsien. 1975.Electric Current Flow in Excitable Cells Oxford: Clarendon Press.Google Scholar
  19. Kepler, T. B., L. F. Abbott and E. Marder, 1992. Reduction of conductance-based neuron models. Preprint. Brandeis University.Google Scholar
  20. Kokubu, H. 1988. Homoclinic and heteroclinic bifurcations of vector fields.Japan J. appl. Math. 5, 455–501.MATHMathSciNetCrossRefGoogle Scholar
  21. Labouriau, I. S. 1989. Degenerate Hopf bifurcation and nerve impulse, Part II.SIAM J. math. Anal. 20, 1–12.MATHMathSciNetCrossRefGoogle Scholar
  22. Maselko, J., M. Alagami and I. Epstein. 1986. Bifurcation analysis of a system of coupled chemical oscillators: bromate-chlorite-iodide.Physica 19D, 153–161.Google Scholar
  23. Nagumo, J. S., S. Arirmoto and R. Seitz. An active pulse transmission line simulating nerve axon.Proc. IRE, 2061–2070.Google Scholar
  24. Rinzel, J. and R. N. Miller. 1980. Numerical solutions of the Hodgkin-Huxley equations.Math. Biosci. 49, 27–59.MATHMathSciNetCrossRefGoogle Scholar
  25. Schecter, S. 1987. The saddle node separatrix loop.SIAM J. math. Anal. 18, 1142–1156.MATHMathSciNetCrossRefGoogle Scholar
  26. Takens, F. 1974. Forced oscillations and bifurcations, applications of global analysis, Vol. 3, 1–59, Rijksuniversiteit, Utrecht: Communications of Maths Institute.Google Scholar
  27. Thom, R. 1975.Structural Stability and Morphogenesis. Reading, MA: Benjamin.MATHGoogle Scholar
  28. Yanagida, E. 1987. Branching of double pulse solutions from single pulse solutions in nerve axon equations.J. diff. Eq. 66, 243–262.MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 1993

Authors and Affiliations

  • J. Guckenheimer
    • 1
  • J. S. Labouriau
    • 2
  1. 1.Mathematics DepartmentCornell UniversityIthacaU.S.A.
  2. 2.Departamento de Mathematica AplicadaUniversidade do PortoPortoPortugal

Personalised recommendations