Advertisement

Bulletin of Mathematical Biology

, Volume 55, Issue 4, pp 745–780 | Cite as

Immune network behavior—I. From stationary states to limit cycle oscilations

  • Rob J. De Boer
  • Alan S. Perelson
  • Ioannis G. Kevrekidis
Article

Abstract

We develop a model for the idiotypic interaction between two B cell clones. This model takes into account B cell proliferation, B cell maturation, antibody production, the formation and subsequent elimination of antibody-antibody complexes and recirculation of antibodies between the spleen and the blood. Here we investigate, by means of stability and bifurcation analysis, how each of the processes influences the model's behavior. After appropriate nondimensinalization, the model consists of eight ordinary differential equations and a number of parameters. We estimate the parameters from experimental sources. Using a coordinate system that exploits the pairwise symmetry of the interactions between two clones, we analyse two simplified forms of the model and obtain bifurcation diagrams showing how their five equilibrium states are related. We show that the so-called immune states lose stability if B cell and antibody concentrations change on different time scales. Additionally, we derive the structure of stable and unstable manifolds of saddle-tye equilibria, pinpoint their (global) bifurcations and show that these bifurcations play a crucial role in determining the parameter regimes in which the model exhibits oscillatory behavior.

Keywords

Hopf Bifurcation Invariant Manifold Unstable Manifold Pitchfork Bifurcation Global Bifurcation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. Abramowitz, M. and I. A. Stegun. 1965.Handbook of Mathematical Functions, p. 17. NY: Dover.Google Scholar
  2. Celada, F. 1971. The cellular basis of immunological memory.Prog. Allergy 15, 223–267.Google Scholar
  3. Coutinho, A. 1989. Beyond clonal selection and network.Immunol. Rev. 110, 63–87.CrossRefGoogle Scholar
  4. Davies, K. A., V. Hird, S. Stewart, G. B. Sivolapenko, P. Jose, A. A. Epenetos and M. Walport. 1990. A study ofin vivo complex formation and clearance in man.J. Immunol. 144, 4613–4620.Google Scholar
  5. De Boer, R. J. 1988. Symmetric idiotypic networks: connectance and switching, stability, and suppression. In:Theoretical Immunology. A. S. Perelson (Ed.), Part 2, pp. 265–289, SFI Studies in the Science of Complexity, Vol. III. Redwood City, CA: Addison-Wesley.Google Scholar
  6. DeBoer, R. J. and P. Hogeweg. 1989a. Memory but no suppression in low-dimensional symmetric idiotypic networks.Bull. math. Biol. 51, 223–246.Google Scholar
  7. De Boer, R. J. and P. Hogeweg. 1989b. Unreasonable implications of reasonable idiotypic network assumptions.Bull. math. Biol. 51, 381–408.MATHCrossRefGoogle Scholar
  8. De Boer, R. J., I. G. Kevrekidis and A. S. Perelson. 1990. A simple idiotypic network model with complex dynamics.Chem. Engng Sci. 45, 2375–2382.CrossRefGoogle Scholar
  9. De Boer, R. J., I. G. Kevrekidis and A. S. Perelson. 1993. Immune network behavior—II. From oscillations to chaos and stationary states.Bull. math. Biol. 55, 781–816.MATHCrossRefGoogle Scholar
  10. De Boer, R. J., A. U. Neumann, A. S. Perelson, L. A. Segel and G. Weisbuch. 1992a. Recent approaches to immune networks. In:Proc. First European Biomathematics Conference. V. Capasso and P. Demongeot (Ed.). Berlin: Springer-Verlag, in press.Google Scholar
  11. De Boer, R. J., J. D. van der Laan and P. Hogeweg. 1992b. Randomness and pattern scale in the immune network: a cellular automaton approach. In:Thinking about Biology. W. D. Stein and F. J. Varela (Ed.), Part 2, SFI Studies in the Science of Complexity, Vol. III. Redwood City, CA: Addison-Wesley, in press.Google Scholar
  12. De Boer, R. J., L. A. Segel and A. S. Perelson. 1992c. Pattern formation in one and two-dimensional shape space models of the immune system.J. theor. Biol. 155, 295–233.CrossRefGoogle Scholar
  13. De Boer, R. J. and A. S. Perelson. 1991. Size and connectivity as emergent properties of a developing immune network.J. theor. Biol. 149, 381–424.Google Scholar
  14. Dibrov, B. F., M. A. Livshits, and M. V. Volkenstein. 1977. Mathematical model of immune responses.J. theor. Biol. 65, 609–631.MathSciNetCrossRefGoogle Scholar
  15. Farmer, J. D., N. H. Packard and A. S. Perelson. 1986. The immune system, adaptation, and machine learning.Physica 22D, 187–204.MathSciNetGoogle Scholar
  16. Fowler, A. C. 1981. Approximate solution of a model of biological immune responses incorporating delay.J. math. Biol. 13, 23–45.MATHMathSciNetCrossRefGoogle Scholar
  17. Hoffmann, G. W. 1975. A theory of regulation and self-nonself discrimination in an immune network.Eur. J. Immunol. 5, 638–647.Google Scholar
  18. Holmberg, D., A. Andersson, L. Carlson and S. Forsgen. 1989. Establishment and functional implications of B-cell connectivity.Immunol. Rev. 110, 89–103.CrossRefGoogle Scholar
  19. Hooijkaas, H., R. Benner, J. R. Pleasants and B. S. Wostmann. 1984. Isotypes and specificities of immunoglobulins produced by germ-free mice fed chemically defined ultrafiltered “antigen-free” diet.Eur. J. Immunol. 14, 1127–1130.Google Scholar
  20. Jerne, N. K. 1974. Towards a network theory of the immune system.Ann. Immunol. (Inst. Pasteur) 125 C, 373–389.Google Scholar
  21. Landis, E. M. and J. R. Pappenheimer. 1962. Exchange of substances through the capillary walls. In:Handbook of Physiology, Circulation II. Washington, DC: American Physiology Society.Google Scholar
  22. Lundkvist, I., A. Coutinho, F. Varela and D. Holmberg. 1989. Evidence for a functional idiotypic network amongst natural antibodies in normal mice.Proc. Natn. Acad. Sci. USA 86, 5074–5078.CrossRefGoogle Scholar
  23. Pabst, R. 1988. The role of the spleen in lymphocyte migration. In:Migration and Homing of Lymphoid Cells. A. J. Husband (Ed.), Vol. I, pp. 63–84. Boca Raton, FL: CRC Press.Google Scholar
  24. Pereira, P., L. Forni, E. L. Larsson, M. Cooper, C. Heusser and A. Coutinho. 1986. Autonomous activation of B and T cells in antigen-free mice.Eur. J. Immunol. 16, 685–688.Google Scholar
  25. Perelson, A. S. 1981. Receptor clustering on a cell surface. III. Theory of receptor cross-linking by multivalent ligands: Description by ligand states.Math. Biosci. 53, 1–39.MATHMathSciNetCrossRefGoogle Scholar
  26. Perelson, A. S. 1984. Some mathematical models of receptor clustering by multivalent antigens. In:Cell Surface Dynamics: Concepts and Models. A. S. Perelson, C. DeLisi and F. W. Wiegel (Eds), pp. 223–276. Marcel Dekker: New York.Google Scholar
  27. Perelson, A. S. 1988.Theoretical Immunology, A. S. Perelson (Ed.), Part 2, SFI Studies in the Science of Complexity, Vol. III. Redwood City, CA: Addison-Wesley.Google Scholar
  28. Perelson, A. S. 1989. Immune network theory.Immunol. Rev. 110, 5–36.CrossRefGoogle Scholar
  29. Perelson, A. S. and C. DeLisi. 1980. Receptor clustering on a cell surface. I. Theory of receptor cross-linking by ligands bearing two chemically identical functional groups.Math. Biosci. 48, 71–110.MATHMathSciNetCrossRefGoogle Scholar
  30. Perelson, A. S. and G. Weisbuch. 1992. Modeling immune reactivity in secondary lymphoid organs.Bull. math. Biol. 54, 649–672.MATHCrossRefGoogle Scholar
  31. Richter, P. H. 1975. A network theory of the immune system.Eur. J. Immunol. 5, 350–354.Google Scholar
  32. Richter, P. H. 1978. The network idea and the immune response. In:Theoretical Immunology. G. I. Bell, A. S. Perelson and G. H. Pimbley Jr (Eds). New York: Marcel Dekker.Google Scholar
  33. Segel, L. A. and A. S. Perelson. 1988. Computations in shape space. A new approach to immune network theory. In:Theoretical Immunology. A. S. Perelson (Ed.), Part 1, pp. 349–382, SFI Studies in the Sciences of Complexity. Redwood City, CA: Addison-Wesley.Google Scholar
  34. Segel, L. A. and A. S. Perelson. 1989. Shape space analysis of immune networks. in:Cell to Cell Signalling: From Experiments to Theoretical Models. A. Goldbeter (Ed.), pp. 273–283. New York: Academic Press.Google Scholar
  35. Segel, L. A. and A. S. Perelson. 1991. Exploiting the diversity of time scales in the immune system: A B-cell antibody model.J. statisc. Phys. 63, 1113–1131.CrossRefGoogle Scholar
  36. Sprent, J. 1989. T lymphocytes and the thymus. In:Fundamental Immunology. W. E. Paul (Ed.), pp. 69–93. New York: Raven Press.Google Scholar
  37. Stewart, J. and F. J. Varela. 1989. Exploring the meaning of connectivity in the immune network.Immunol. Rev. 110, 37–61.CrossRefGoogle Scholar
  38. Stewart, J. and F. J. Varela. 1990. Dynamics of a class of immune networks. II. Oscillatory activity of cellular and humoral components.J. theor. Biol. 144, 103–115.MathSciNetGoogle Scholar
  39. Strand, F. L. 1978.Physiology, p. 559. New York: Macmillan.Google Scholar
  40. Varela, F. J. and A. Coutinho. 1991. Second generation immune networks.Immunol. Today 12, 159–166.Google Scholar
  41. Varela, F. J., A. Anderson, G. Dietrich, A. Sundblad, D. Holmberg, M. Kazatchkine and A. Coutinho. 1991. The population dynamics of natural antibodies in normal and autoimmune individuals.Proc. Natn. Acad. Sci. USA 88, 5917–5921.CrossRefGoogle Scholar
  42. Vaz, N. N. and F. J. Varela. 1978. Self and non-sense: an organism-centered approach to immunology.Med Hypoth. 4, 231–267.CrossRefGoogle Scholar
  43. Weisbuch, G., R. J. De Boer and A. S. Perelson. 1990. Localized memories in idiotypic networks.J. theor. Biol. 146, 483–499.Google Scholar
  44. Weiss, L. (1972).The Cells and Tissues of the Immune System. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar

Copyright information

© Society for Mathematical Biology 1993

Authors and Affiliations

  • Rob J. De Boer
    • 1
  • Alan S. Perelson
    • 2
  • Ioannis G. Kevrekidis
    • 3
  1. 1.Theoretical BiologyUtrecht UniversityUtrechtThe Netherlands
  2. 2.Theoretical DivisionLos Alamos National LaboratoryLos AlamosU.S.A.
  3. 3.Department of Chemical EngineeringPrinceton UniversityPrincetonU.S.A.

Personalised recommendations