Skip to main content

Modelling the fast fluorescence rise of photosynthesis

Abstract

We construct an ODE model for the fast fluorescence rise of photosynthesis by combining the current reaction scheme of the PS II two-electron-gate with a quasi steady-state description of the fast processes of excitation energy transfer and primary charge separation. The model is fitted to measured induction curves with a multiple shooting algorithm, and remarkably good approximations of the data are obtained. Model refinements are discussed focusing on PS II heterogeneity, and on PS I.

This is a preview of subscription content, access via your institution.

Literature

  • Arnon, D. I. and G. M.-S. Tang. 1988. Cytochrome b-559 and proton conductance in oxygenic photosynthesis.Proc. natn. Acad. Sci. U.S.A. 85, 9524–9528.

    Article  Google Scholar 

  • Bader, G. and P. deuflhard, 1981.A semi-implicit mid-point rule for stiff systems of ODE, SFB 123. Technical Report 114, University of Heidelberg, 1981.

  • Baake, E. 1989. Differentialgleichungssystem zur Beschreibung der Fluoreszenzinduktion (OIDP-Kinetik) der Photosynthese. PhD Theses, University of Bonn (in German).

  • Baker, N. R. and A. N. Webber. 1987. Interactions between photosystems.Adv. Bot. Res. 13, 1–66.

    Article  Google Scholar 

  • Black, M. T., T. H. Brearley and P. Horton. 1986. Heterogeneity in chloroplast photosystem II.Photosynth. Res. 8, 193–207.

    Article  Google Scholar 

  • Böhme, H. 1978. Quantitative determination of ferredoxin, ferredoxin-NADP+-reductase and plastocyanin in spinach chloroplasts.Eur. J. Biochem. 83, 137–141.

    Article  Google Scholar 

  • Bock, H. G. 1981. Numerical treatment of inverse problems in chemical reaction kinetics. InModelling of Chemical Reaction Systems, K. H. Ebert, P. Deuflhard and W. Jäger (Eds), pp. 102–125. Berlin: Springer.

    Google Scholar 

  • Bock, H. G. 1987. Randwertproblemmethoden zur Parameteridentifizierung in Systemen nichtlinearer Differentialgleichungen.Bonner Mathematische Schriften, Vol. 183. E. Brieskornet al. (Eds) (in German).

  • Briantais, J. M.et al. 1986. Chlorophyll a fluorescence of higher plants: chloroplasts and leaves. InLight Emission by Plants and Bacteria, Govindjee, J. Amesz and D. C. Fork (Eds). New York: Academic Press.

    Google Scholar 

  • Crofts, A. R. and C. A. Wraight. 1983. The electrochemical domain of photosynthesis.Biochim. Biophys. Acta 726, 149–185.

    Google Scholar 

  • Dau, H., R. Windecker and U. P. Hansen. 1992. Effect of light-induced changes in thylakoid voltage on chlorophyll fluorescence of Aegopodium podagraria leaves.Biochim. Biophys. Acta, in press.

  • Duysens, L. M. N. 1986. Introduction to (bacterio)chlorophyll emission: A historical perspective. InLight Emission by Plants and Bacteria, Govindjee, J. Amesz and D. C. Fork (Eds). New York: Academic Press.

    Google Scholar 

  • Forbush, B. and B. Kok. 1968. Reaction between primary and secondary electron acceptors of photosystem II of photosynthesis.Biochim. Biophys. Acta,162, 243–253.

    Article  Google Scholar 

  • van Gorkom, H. 1986. Fluorescence measurements in the study of photosystem II electron transport. InLight Emission by Plants and Bacteria, Govindjee, J. Amesz and D. C. Fork (Eds). New York: Academic Press.

    Google Scholar 

  • Govindjee and J. J. Eaton-Rye. 1986. Electron transfer through photosystem II acceptors: Interaction with anions.Photosynth. Res. 10, 365–379.

    Article  Google Scholar 

  • Govindjee and K. Satoh. 1986. Fluorescence properties of chlorophyll b- and chlorophyll c-containing algae. InLight Emission by Plants and Bacteria, Govindjee, J. Amesz and D. C. Fork (Eds). New York: Academic Press.

    Google Scholar 

  • Haehnel, W. 1984. Photosynthetic electron transport.Ann. Rev. Plant Physiol. 35, 659–693.

    Google Scholar 

  • Joliot, P. and A. Joliot. 1964. Etudes cinétiques de la réaction photochimique liberant l'oxygène au cours de la photosynthèse.C. R. Acad. Sci. Paris 258, 4622–4625.

    Google Scholar 

  • Jursinic, P. A. 1986. Delayed fluorescence: Current concepts and status. InLight Emission by Plants and Bacteria, Govindjee, J. Amesz and D. C. Fork (Eds). New York: Academic Press.

    Google Scholar 

  • Kautsky, H. and A. Hirsch. 1931. Neue Versuche zur Kohlensäureassimilation.Naturwissenschaften 48, 964–981.

    Article  Google Scholar 

  • Kischkoweit, C., W. Leibl and H. W. Trissl. 1988. Theoretical and experimental study of trapping times and antenna organization in pea chloroplasts by means of the artificial fluorescence quencher m-dinitrobenzene.Biochim. Biophys. Acta 933, 276–287.

    Article  Google Scholar 

  • Krause, G. H. and E. Weis. 1991. Chlorophyll fluorescence and photosynthesis: The basics.Ann. Rev. Plant Physiol. Plant Mol. Biol. 42, 313–349.

    Article  Google Scholar 

  • Lavergne, L. 1982a. Two types of primary acceptors in chloroplast photosystem II. I. Different recombination properties.Photobiochem. Photobiophys. 3, 257–271.

    Google Scholar 

  • Lavergne, L. 1982b. Two types of primary acceptors in chloroplast photosystem II. II. Reduction in two successive photoacts.Photobiochem. Photobiophys. 3, 273–285.

    Google Scholar 

  • Leibl, W., J. Breton, J. Deprez and H. W. Trissl. 1989. Photoelectric study on the kinetics of trapping and charge stabilization in oriented PS II membranes.Photosynth. Res. 22, 257–275.

    Article  Google Scholar 

  • McCauley, S. W., A. Melis, G. H. S. Tang and D. I. Arnon. 1987. Protonophores induce plastoquinol oxidation and quench chloroplast fluorescence: Evidence for a cyclic, protonconducting pathway in oxygenic photosynthesis.Proc. natn. Acad. Sci. U.S.A. 84, 8424–8428.

    Article  Google Scholar 

  • Neubauer, C. and U. Schreiber. 1987. The polyphasic rise of chlorophyll fluorescence upon onset of strong continuous illumination: I. Saturation characteristics and partial control by the photosystem II acceptor side.Z. Naturforsch. 42c, 1246–1254.

    Google Scholar 

  • Renger, G. and A. Schulze. 1985. Quantitative analysis of fluorescence induction curves in isolated spinach chloroplasts.Photobiochem. Photobiophys. 9, 79–87.

    Google Scholar 

  • Renger, G. and U. Schreiber. 1986. Practical applications of fluorometric methods to algae and higher plant research. InLight Emission by Plants and Bacteria, Govindjee, A. Amesz and D. C. Fork (Eds). New York: Academic Press.

    Google Scholar 

  • Sane, P. V. and A. W. Rutherford. 1986. Thermoluminescence from photosynthetic membranes. InLight Emission by Plants and Bacteria, Govindjee, J. Amesz and D. C. Fork (Eds). New York: Academic Press.

    Google Scholar 

  • Schatz, G. H., H. Brock and A. R. Holzwarth. 1988. Kinetic and energetic model for the primary processes in photosystem II.Biophys. J. 54, 397–405.

    Article  Google Scholar 

  • Schlöder, J. P. 1988. Numerische Methoden zur Behandlung hochdimensionaler Aufgaben der Parameteridentifizierung.Bonner Mathematische Schriften, Vol. 187, E. Brieskornet al. (Eds) (in German).

  • Schreiber, U., R. Bauer and U. F. Franck. 1971. Chlorophyll fluorescence induction in green plants at oxygen deficiency.Proceedings of the IInd International Congress on Photosynthesis, Stresa 1971, pp. 169–179.

  • Schreiber, U. and C. Neubauer. 1987. The polyphasic rise of chlorophyll fluorescence upon onset of strong continuous illumination: II. Partial control by the photosystem II donor side and possible ways of interpretation.Z. Naturforsch. 42c, 1255–1264.

    Google Scholar 

  • Strasser, R. J. 1978. The grouping model of plant photosynthesis. InChloroplast Development, G. Akoyunoglou,et al. (Eds). North Holland: Biomedical Press, Elsevier.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Baake, E., Schlöder, J.P. Modelling the fast fluorescence rise of photosynthesis. Bltn Mathcal Biology 54, 999–1021 (1992). https://doi.org/10.1007/BF02460663

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02460663

Keywords

  • Chlorophyll Fluorescence
  • Core Model
  • Excitation Energy Transfer
  • Parameter Estimation Problem
  • Fluorescence Rise