Bulletin of Mathematical Biology

, Volume 54, Issue 6, pp 939–955 | Cite as

Nonlinear phenomena and chaos in a Monte Carlo simulated microbial ecosystem

  • Ricard V. Solé
  • Joaquim Valls


Oscillations and chaos can be modelled and observed in a realistic simulation model of interacting prey-predator populations based on Monte Carlo simulation methods. These nonlinear phenomena are linked with some biological and physical bifurcation parameters and mathematical tools from dynamical systems theory may be used in order to characterize this behaviour. Chaotic dynamics are therefore, in our simulation, more the rule than the exception, and are related to delays associated with spatial degrees of freedom.


Monte Carlo Lyapunov Exponent Chaotic Dynamic Strange Attractor Large Lyapunov Exponent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Giró, A., J. M. González, J. A. Padró and V. Torra. 1980. The structure of liquid lead at 760 K through molecular dynamics.J. Chem. Phys. 73, 2970–2972.CrossRefGoogle Scholar
  2. Giró, A., J. A. Padró, J. Valls and J. Wagensberg. 1985. Monte Carlo simulation of an ecosystem: a matching between two levels of observation.Bull. math. Biol. 47, 111–112.MathSciNetCrossRefGoogle Scholar
  3. Giró, A., J. Valls, J. A. Padró and J. Wagensberg. 1986. Monte Carlo simulation program for ecosystems.CABIOS 2, 291–296.Google Scholar
  4. Godfray, H. C. and S. P. Blythe. 1990. Complex dynamics in multispecies communities.Phil. Trans. R. Soc. Lond. B330, 221–233.Google Scholar
  5. Grassberger, P. and I. Procaccia. 1983. On the characterization of strange attractors.Phys. Rev. Lett. 50, 346–349.MathSciNetCrossRefGoogle Scholar
  6. Heerman, D. W. 1990.Computer Simulation Methods in Theoretical Physics. Berlin: Springer.Google Scholar
  7. Hogeweg, P. and B. Hesper. 1990. Individual-oriented modelling in ecology.Math. Comp. Modelling 13, 83–90.CrossRefGoogle Scholar
  8. Huston, M. A., D. DeAngelis and W. Post. 1988. New computer models unify ecological theory.Bioscience 38, 682–691.CrossRefGoogle Scholar
  9. May, R. 1986. When two and two do not sum four: nonlinear phenomena in ecology.Proc. R. Soc. London B228, 241–257.CrossRefGoogle Scholar
  10. Mimura, M. and J. D. Murray. 1978. On a diffusive prey-predator model which exhibits patchiness.J. theor. Biol. 75, 249–262.MathSciNetCrossRefGoogle Scholar
  11. Parker, T. S. and L. O. Chua. 1989.Practical Numerical Algorithms for Chaotic Systems. Berlin: Springer.MATHGoogle Scholar
  12. Rössler, O. E. 1976. An equation for continuous chaos.Phys. Lett. 57A, 397–398.Google Scholar
  13. Schaffer, W. M. 1984. Stretching and folding in lynx returns: evidence for a strange attractor in nature?Am. Nat. 124, 798–821.CrossRefGoogle Scholar
  14. Schaffer, W. M. and M. Kot. 1985. Do strange attractors govern ecological systems?Bioscience 35, 342–350.CrossRefGoogle Scholar
  15. Schuster, H. G. 1984.Deterministic Chaos. Weinheim: Physic-Verlag.MATHGoogle Scholar
  16. Solé, R. V. and J. Valls. 1990.Strange Attractors in Ecodynamics: Chaos in Monte Carlo Simulated Ecosystems. Modelling and Simulation. Proceedings of the 1990 European Simulation Multiconference, Nuremberg, pp. 624–629.Google Scholar
  17. Solé, R. V. and J. Valls. 1991. Order and chaos in a 2D Lotka-Volterra coupled map lattice.Phys. Lett. A153, 330–336.CrossRefGoogle Scholar
  18. Solé, R. V. and J. Valls. 1992. On structural stability and chaos in biological systems.J. theor. Biol., in press.Google Scholar
  19. Solé, R. V., D. López, M. Ginovart and J. Valls. 1992. Self-organized criticality in Monte Carlo simulated ecosystems.Phys. Lett. A, in press.Google Scholar
  20. Takens, F. 1981.Lecture Notes in Physics, Vol. 898. Berlin: Springer.Google Scholar
  21. Wagensberg, J., D. López and J. Valls. 1988. Statistical aspects of biological organization.J. Phys. Chem. Sol.,49, 695–700.CrossRefGoogle Scholar
  22. Wolf, A., J. B. Swift, H. L. Swinney and J. A. Vastano. 1985. Determining Lyapunov exponents from time series.Physica 16D, 285–317.MathSciNetGoogle Scholar

Copyright information

© Society for Mathematical Biology 1992

Authors and Affiliations

  • Ricard V. Solé
    • 1
  • Joaquim Valls
    • 1
  1. 1.Complex Systems Research Group, Department de Fisica i Enginyeria NuclearUniversitat Politecnica de CatalunyaBarcelonaSpain

Personalised recommendations