Advertisement

Bulletin of Mathematical Biology

, Volume 49, Issue 5, pp 597–613 | Cite as

Theoretical study of a two-dimensional autocatalytic model for calcium dynamics at the extracellular fluid-bone interface

  • P. Tracqui
  • A. M. Perault-Staub
  • G. Milhaud
  • J. F. Staub
Article

Abstract

The temporal behaviours of the nonlinear substructure of a self-organized compartmental model of calcium metabolism were investigated. The order-two autocatalytic process included in this simple two-dimensional model is compared to some secondary nucleation mechanisms which should take place at the extracellular fluid-bone interface. The model gives rise to complex dynamic behaviours, and multistability properties, involving up to two stable periodic regimes (birhythmicity), were established in different topological configurations. The bifurcations occurring on the boundaries between regions of different qualitative behaviour have been determined. These properties are discussed in relation to the dynamical behaviour of other two-variable models, especially those including the same nonlinearity.

Keywords

Hopf Bifurcation Bifurcation Diagram Continuous Stir Tank Reactor Stable Limit Cycle Global Bifurcation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. Andronov, A. A., E. A. Leontovitch, I. I. Gordon and A. G. Maier. 1973.Theory of Bifurcations of Dynamic Systems on a Plane. New York: Wiley Interscience.Google Scholar
  2. Bar-Eli, K. 1981. “The Behavior of a Multistable Chemical System near the Critical Point.” InNonlinear Phenomena in Chemical Dynamics, C. Vidal and A. Pacault (Eds), pp. 228–239. Berlin: Springer.Google Scholar
  3. Borgis, D. and M. Moreau. 1984. “Two-Cell Stochastic Model of the Schlögl Reaction with Small Diffusional Coupling.”J. statist. Phys.,37, 631–651.MathSciNetCrossRefGoogle Scholar
  4. De Kepper, P. and J. Boissonade. 1985. “From Bistability to Sustained Oscillations in Homogeneous Chemical Systems in Flow Reactor Mode.” InOscillations and Travelling Waves in Chemical Systems, R. J. Field and M. Burger (Eds), pp. 223–256. New York: Wiley Interscience.Google Scholar
  5. Eanes, E. D. and J. D. Termine. 1983. “Calcium in Mineralized Tissues.” InCalcium in Biology, T. G. Spiro (Ed.), pp. 203–233. New York: Wiley Interscience.Google Scholar
  6. Epstein, I. R. 1983. “Oscillations and Chaos in Chemical Systems.”Physica D 7, 47–56.CrossRefGoogle Scholar
  7. — 1984. “Complex Dynamical Behavior in ‘Simple’ Chemical Systems.”J. phys. Chem. 88, 187–198.CrossRefGoogle Scholar
  8. Garside, J. R. and J. Davey. 1980. “Secondary Contact Nucleation Kinetics, Growth and Scale-up.”Chem. Eng. Commun.,4, 393–424.Google Scholar
  9. Goldbeter, A., J. L. Martiel and O. Decroly. 1984. “From Excitability and Oscillations to Birhythmicity and Chaos in Biochemical Systems.” InDynamics of Biochemical Systems, J. Ricard and A. Cornish-Bowden (Eds), pp. 173–212. New York: Plenum Press.Google Scholar
  10. Golubitsky, M. and W. F. Langford. 1981. “Classification and Unfoldings of Degenerate Hopf Bifurcations.”J. diff. Equat. 41, 375–415.MATHMathSciNetCrossRefGoogle Scholar
  11. — and D. G. Schaeffer. 1985.Singularities and Groups in Bifurcation Theory. New York: Springer.MATHGoogle Scholar
  12. Gray, P. and S. K. Scott. 1984. “Autocatalytic Reactions in the Isothermal Continuous Stirred Tank Reactor.”Chem. Eng. Sci. 39, 1087–1097.CrossRefGoogle Scholar
  13. Guckenheimer, J. 1986. “Multiple Bifurcation Problems for Chemical Reactors.”Physica D 20, 1–20.MATHMathSciNetCrossRefGoogle Scholar
  14. — and P. H. Holmes. 1983.Nonlinear Oscillations, Dynamical Systems and Bifurcation of Vector Fields. New York: Springer.Google Scholar
  15. Hassard, B. D., N. D. Kazarinoff and Y. H. Wan. 1981.Theory and Applications of Hopf Bifurcation. Cambridge: Cambridge University Press.MATHGoogle Scholar
  16. — and Y. H. Wan. 1978. “Bifurcation Formulae Derived from Center Manifold Theory.”J. math. Analysis Appl. 63, 297–312.MATHMathSciNetCrossRefGoogle Scholar
  17. Larson, M. A. and J. Garside. 1986. “Solute Clustering and Interfacial Tension.”J. Crystal Growth 76, 88–92.CrossRefGoogle Scholar
  18. Markus, M. and B. Hess. 1984. “Transitions between Oscillatory Modes in a Glycolytic Model System.”Proc. natl. Acad. Sci. U.S.A. 81, 4394–4398.CrossRefGoogle Scholar
  19. Maselko, J., M. Alamgir and I. R. Epstein. 1986. “Bifurcation Analysis of a System of Coupled Chemical Oscillators: Bromate-Chlorite-Iodide.”Physica D 19, 153–161.MathSciNetCrossRefGoogle Scholar
  20. Merkin, J. H., D. J. Needham and S. K. Scott. 1986. “Oscillatory Chemical Reactions in Closed Vessels.”Proc. R. Soc. Lond. A 406, 299–323.CrossRefGoogle Scholar
  21. Moran, F. and A. Goldbeter. 1984. “Onset of Birhythmicity in a Regulated Biochemical System.”Biophys. Chem. 20, 149–156.CrossRefGoogle Scholar
  22. Nancollas, G. H. 1979. “The Growth of Crystals in Solution.”Adv. Colloids and Interface Sci. 10, 215–252.CrossRefGoogle Scholar
  23. Nelson, D. G. A. and J. D. McLean. 1984. “High-Resolution Electron Microscopy of Octacalcium Phosphate and its Hydrolysis Products.”Calcif. Tissue Int. 36, 219–232.CrossRefGoogle Scholar
  24. Neuman, M. W. 1982. “Blood: Bone Equilibrium.”Calcif. Tissue Int. 34, 117–120.CrossRefGoogle Scholar
  25. Neuman, W. F. and M. W. Neuman. 1958.The Chemical Dynamics of Bone Mineral. Chicago: University of Chicago Press.Google Scholar
  26. Nicolis, G. and I. Prigogine. 1977.Self-organization in Nonequilibrium Systems. New York: Wiley Interscience.MATHGoogle Scholar
  27. Nienow, A. W. and R. Conti. 1978. “Particle Abrasion at High Solids Concentration in Stirred Vessels.”Chem. Eng. Sci. 33, 1077–1086.CrossRefGoogle Scholar
  28. Ottens, E. P. and E. J. de Jong. 1973. “A Model for Secondary Nucleation in a Stirred Vessel Cooling Crystallizer.”Ind. Eng. Chem. Fundam. 12, 179–184.CrossRefGoogle Scholar
  29. Perault-Staub, A. M., P. Brezillon, P. Tracqui and J. F. Staub. 1984. “A Self-organized Temporal Model for Rat Calcium Metabolism: Mineral Nonlinear Reaction, Circadian Oscillations.” InPhysiological Systems: Dynamics and Controls, pp. 55–61. Oxford: Institute of Measurement and Control.Google Scholar
  30. Richter, P. H. 1984. “Entrainment of Chemical Oscillators and Resonance Dissipation.”Physica D 10, 353–368.MathSciNetCrossRefGoogle Scholar
  31. Schlög, F. 1972. Chemical Reaction Models for Non-equilibrium Phase Transitions.”Z. Physik 253, 147–161.CrossRefGoogle Scholar
  32. Schwarz, I. B. 1984. “Random Mixed Modes Due to Fluctuations in the Belousov-Zhabotinskii Reaction”.Phys. Lett. 102A, 25–31.Google Scholar
  33. Sel'kov, E. E. 1968. “Self-oscillations in Glycolysis.”Eur. J. Biochem. 4, 79–86.CrossRefGoogle Scholar
  34. —. 1970. “Two Alternative Autooscillating Stationary States in Thiol Metabolism-Two Alternative Types of Cell Reproduction: Normal and Malignant One.”Biophysika 15, 1065–1073.Google Scholar
  35. Staub, J. F., A. M. Perault-Staub and G. Milhaud. 1979. “Endogenous Nature of Circadian Rhythms in Calcium Metabolism.”Am. J. Physiol. 237, R311-R317.Google Scholar
  36. Staub, J. F., P. Tracqui, P. Brezillon, G. Milhaud and A. M. Perault-Staub. 1987. “Calcium Metabolism in the Rat: A Temporal Self-organized Model.”Am. J. Physiol. In press.Google Scholar
  37. Tracqui, P., P. Brezillon, J. F. Staub, A. M. Perault-Staub and G. Milhaud. 1985. “Diversité et Complexité des Comportements Dynamiques Temporels d'un Modèle Autocatalytique Simple.”C. R. Acad. Sc. Paris 300, 253–258.MathSciNetGoogle Scholar
  38. Tyson, J. J. and S. Kauffman. 1975. “Control of Mitosis by a Continuous Biochemical Oscillation: Synchronization; Spatially Inhomogeneous Oscillations.”J. math. Biol. 1, 289–310.MATHGoogle Scholar
  39. — and J. C. Light. 1973. “Properties of Two-component Bimolecular and Trimolecular Chemical Reaction Systems.”J. chem. Phys. 59, 4164–4173.CrossRefGoogle Scholar
  40. Urist, M. R. (Ed.). 1980.Fundamental and Clinical Bone Physiology. Philadelphia: Lippincott.Google Scholar
  41. Vaganov, D. A., N. G. Samoilenko and V. G. Abramov. 1978. “Periodic Regimes of Continuous Stirred Tank Reactors.”Chem. Eng. Sci. 33, 1133–1140.Google Scholar

Copyright information

© Society for Mathematical Biology 1987

Authors and Affiliations

  • P. Tracqui
    • 1
  • A. M. Perault-Staub
    • 1
  • G. Milhaud
    • 1
  • J. F. Staub
    • 1
  1. 1.C.H.U. Saint-AntoineC.N.R.S. UA 163, Service de BiophysiqueParis Cedex 12France

Personalised recommendations