Bulletin of Mathematical Biology

, Volume 49, Issue 3, pp 307–320 | Cite as

A nonlinear treatment of the protocell model by a boundary layer approximation

  • Kazuaki Tarumi
  • Helmut Schwegler
Article

Abstract

The “protocell” is a mathematical model of a self-maintaining unity based on the dynamics of simple reaction-diffusion processes and a self-controlled dynamics of the surface. In this paper its spatio-temporal behaviour far from the stationary structure is investigated by means of a boundary layer approximation. It is shown in detail how a simplified and mathematically feasible equation can be derived from the original parabolic problem. It turns out that the known instability which is initiated in the linear region around the stationary structure is continued further in the direction to a division by nonlinear dynamics.

Keywords

Linear Stability Analysis Surface Motion Division Process Nonlinear Region Boundary Layer Approximation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. An der Heiden, U., G. Roth and H. Schwegler. 1985a. “Principles of Self-generation and Selfmaintenance.”Acta Biotheor. 34, 125–138.CrossRefGoogle Scholar
  2. — and —. 1985b. “Die Organisation der Organismen: Selbstherstellung und Selbsterhaltung.”Funkt. Biol. Med. 5, 330–346.Google Scholar
  3. Ben-Jacob, E., N. Goldenfeld, J. S. Langer and G. Schön. 1984. “Boundary-layer Model of Pattern Formation in Solidification.”Phys. Rev. A. 29, 330–340.CrossRefGoogle Scholar
  4. Brower, R. C., D. A. Kessler, J. Koplik and H. Levine. 1983. “Geometrical Approach to Moving Interface Dynamics.”Phys. Rev. Lett. 51, 1111–1114.CrossRefGoogle Scholar
  5. — and —. 1984. “Geometrical Models of Interface Evolution.”Phys. Rev. A. 29, 1335–1342.CrossRefGoogle Scholar
  6. Rex, S. W. 1965. “A Theory of Macromolecular and Cellular Origins.”Nature 205, 328–340.CrossRefGoogle Scholar
  7. — and T. Nakashima. 1980. “The Assembly and Properties of Protobiological Structures.”Biosystems 12, 155–166.CrossRefGoogle Scholar
  8. Greenspan, H. P. 1977. “On the Dynamics of Cell Cleavage.”J. theor. Biol. 65, 79–99.CrossRefGoogle Scholar
  9. Langer, J. S. 1980. “Instabilities and Pattern Formation in Crystal Growth.”Rev. Med. Phys. 52, 1–28.CrossRefGoogle Scholar
  10. — and H. Müller-Krumbhaar. 1983. “Mode Selection in a Dendrite-like Nonlinear System.”Phys. Rev. A 27, 499–514.CrossRefGoogle Scholar
  11. Oparin A. J. 1968.Genesis and Evolutionary Development of Life. New York: Academic Press.Google Scholar
  12. Schwegler, H. 1986. “Physico-mathematical Models of Self-maintenance.”Int. J. Endocyt. Cell Res. 3, 247–264.Google Scholar
  13. — and K. Tarumi. 1986. “The Protocell: a Mathematical Model of Self-maintenance.”Biosystems 19, 307–315.CrossRefGoogle Scholar
  14. — and B. Gerstmann. 1985. “Physicochemical model of a protocell.”J. math. Biol. 22, 335–348.MATHMathSciNetCrossRefGoogle Scholar
  15. Sivashinsky, G. I. 1977. “Nonlinear Analysis of Hydrodynamic Instability in Laminar Flames—I. Derivation of Basic Equations.”Acta Astronaut. 4, 1177–1206.MATHMathSciNetCrossRefGoogle Scholar
  16. — 1983. “Instabilities, Pattern Formation, and Turbulence in Flames.”Ann. Rev. Fluid Mech. 15, 179–199.MATHCrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 1987

Authors and Affiliations

  • Kazuaki Tarumi
    • 1
  • Helmut Schwegler
    • 1
  1. 1.Institute of Theoretical Physics and Center for Biosystems ResearchUniversity of BremenBremen 33F.R.G.

Personalised recommendations