Advertisement

Bulletin of Mathematical Biology

, Volume 59, Issue 6, pp 1077–1100 | Cite as

Role of fibroblast migration in collagen fiber formation during fetal and adult dermal wound healing

  • Paul D. Dale
  • Jonathan A. Sherratt
  • Philip K. Maini
Article

Abstract

Adult dermal wounds, in contrast to fetal wounds, heal with the formation of scar tissue. A crucial factor in determining the degree of scarring is the ratio of types I and III collagen, which regulates the diameter of the combined fibers. We developed a reaction-diffusion model which focuses on the control of collagen synthesis by different isoforms of the polypeptide transforming growth factor-β (TGFβ). We used the model to investigate the current controversy as to whether the fibroblasts migrate into the wound from the surrounding unwounded dermis or from the underlying subcutaneous tissue. Numerical simulations of a spatially independent, temporal model led to a value of the collagen ratio consistent with that of healthy tissue for the fetus, but corresponding to scarring in the adult. We investigated the effect of topical application of TGFβ and show that addition of isoform 3 reduces scar tissue formation, in agreement with the experiment. However, numerical solutions of the reaction-diffusion system do not exhibit this sensitivity to growth factor application. Mathematically, this corresponds to the observation that behind healing wavefront solutions, a particular healed state is always selected independent of transients, even though there is a continuum of possible positive steady states. We explain this phenomenon using a caricature system of equations, which reflects the key qualitative features of the full model but has a much simpler mathematical form. Biologically, our results suggest that the migration into a wound of fibroblasts and TGFβ from the surrounding dermis alone cannot account for the essential features of the healing process, and that fibroblasts entering from the underlying subcutaneous tissue are crucial to the healing process.

Keywords

Wound Healing Wave Speed Travel Wave Solution Collagen Level Fetal Skin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adzick, N. S. and M. T. Longaker. 1992. Characteristics of fetal tissue repair. InFetal Wound Healing, N. S. Adzick and M. T. Longaker (Eds). New York: Elsevier, pp. 53–70.Google Scholar
  2. Appling, W. D., W. R. O'Brien, D. A. Johnston and M. Duvie. 1989. Synergistic enhancement of type I and III collagen production in cultured fibroblasts by transforming growth factor-β and ascorbate.FEBS Lett. 250, 541–544.CrossRefGoogle Scholar
  3. Armstrong, J. R. and M. W. J. Ferguson. 1995. Ontogeny of the skin and the transition from scar-free to scarring phenotype during wound healing in the pouch young of a marsupial,Monodelphis domestica.Dev. Biol. 169, 242–260.CrossRefGoogle Scholar
  4. Bard, J. B. L. and E. D. Hay. 1975. The behaviour of fibroblasts from the developing avian cornea: morphology and movementin situ andin vitro.J. Cell Biol. 67, 400–418.CrossRefGoogle Scholar
  5. Canosa, J. 1973. On a nonlinear diffusion equations describing population growth.IBM J. Res. Dev. 17, 307–313.zbMATHMathSciNetCrossRefGoogle Scholar
  6. Chaplain, M. A. J., S. M. Giles, B. D. Sleeman and R. J. Jarvis. 1995. A mathematical analysis of a model for tumour angiogenesis.J. Math. Biol. 33, 744–770.zbMATHCrossRefGoogle Scholar
  7. Chen, R. H., R. Ebner and R. Derynck. 1993. Inactivation of the type II receptor reveals two receptor pathways for the diverse TGFβ activities.Science 260, 1335–1338.Google Scholar
  8. Crosson, C. E., R. W. Klyce and R. W. Beuerman. 1986. Epithelial wound closure in the rabbit cornea.Invest. Ophthal. Vis. Sci. 27, 464–473.Google Scholar
  9. Dale, P. D., P. K. Maini and J. A. Sherratt. 1994. Mathematical modelling of corneal epithelial wound healing.Math. Biosci. 124, 127–147.zbMATHCrossRefGoogle Scholar
  10. Dale, P. D., J. A. Sherratt and P. K. Maini. 1996. A mathematical model for collagen fibre formation during foetal and adult dermal wound healing.Proc. R. Soc. Lond. B 263, 653–660.Google Scholar
  11. Ferguson, M. W. J. and G. F. Howarth. 1992. Marsupial models of scarless fetal wound healing. InFetal Wound Healing, N. S. Adzick and M. T. Longaker (Eds). New York: Elsevier, pp. 95–124.Google Scholar
  12. Fisher, R. A. 1937. The wave of advance of advantageous genes.Ann. Eugen. 7, 353–369.Google Scholar
  13. Flint, M. H., A. S. Craig, H. C. Reilly, G. C. Gillard and D. A. D. Parry. 1984. Collagen fibril diameters and glycosaminoglycan content of skins—indices of tissue maturity and function.Connect. Tissue Res. 13, 69–81.CrossRefGoogle Scholar
  14. Jeffrey, J. J. 1992. Collagen degradation. InWound Healing: Biochemical and Clinical Aspects, I. K. Cohen, R. F. Diegelmann and W. J. Lindblad (Eds). Philadelphia: W. B. Saunders, pp. 177–194.Google Scholar
  15. Knight, K. R., D. A. Lepore, R. S. C. Horne, M. Ritz, J. V. Hurley, S. Kumta and B. M. O'Brien, 1993. Collagen content of uninjured skin and scar tissue in fetal and adult sheep.Int. J. Exp. Pathol. 74, 583–591.Google Scholar
  16. Kolmogoroff, A., I. Petrovsky and N. Piscounoff. 1937. Etude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique.Moscow Univ. Bull. Math. 1, 1–25.zbMATHGoogle Scholar
  17. Krieg, T. 1995. Collagen in the healing wound.Wounds 7, A5-A12.Google Scholar
  18. Krummel, T. M., B. A. Michna, B. L. Thomas, M. B. Sporn, J. M. Nelson, A. M. Salzberg, I. K. Cohen and R. F. Diegelmann. 1988. Transforming growth factor beta induces fibrosis in a fetal wound model.J. Pediatr. Surg. 23, 647–652.Google Scholar
  19. Lin, R. Y., K. M. Sullivan, P. A. Argenta, M. Meuli, H. P. Lorenz and N. S. Adzick. 1995. Exogenous transforming growth factor beta amplifies its own expression and induces scar formation in a model of human fetal skin repair.Annal Surg. 222, 146–154.CrossRefGoogle Scholar
  20. Martin, P., J. Hopkinson-Woolley and J. McCluskey. 1992. Growth factors and cutaneous wound repair.Progr. Growth Factor Res. 4, 25–44.CrossRefGoogle Scholar
  21. Mast, B. A., J. M. Nelson and T. M. Krummel. 1992. Tissue repair in the mammalian fetus. InWound Healing: Biochemical and Clinical Aspects, I. K. Cohen, R. F. Diegelmann and W. J. Lindblad (Eds). Philadelphia: W. B. Saunders, pp. 326–343.Google Scholar
  22. McDonald, J. A. 1988. Fibronectin: a primitive matrix. InThe Molecular and Cellular Biology of Wound Repair, R. A. F. Clark and P. M. Henson (Eds). New York: Plenum, pp. 405–436.Google Scholar
  23. Merkel, J. R., B. R. DiPaolo, G. C. Hallock and D. C. Rice 1988. Type I and type III collagen content of healing wounds in fetal and adult rates.Proc. Soc. Exp. Biol. Med. 187, 493–497.Google Scholar
  24. Morgan, C. J. and W. J. Pledger. 1992. Fibroblast proliferation. InWound Healing: Biochemical and Clinical Aspects, I. K. Cohen, R. F. Diegelmann and W. J. Lindblad (Eds). Philadelphia: W. B. Saunders, pp. 63–76.Google Scholar
  25. Murphy, P. G., B. J. Loitz, C. B. Frank and D. A. Hart. 1994. Influence of exogenous growth factors on the synthesis and secretion of collagen type-I and type-III by explants of normal and healing rabbit ligaments.Biochem. Cell Biol. 72, 403–409.CrossRefGoogle Scholar
  26. Murray, J. D., R. T. Tranquillo and P. K. Maini. 1988. Mechanochemical models for generating biological pattern and form in development.Phys. Rep. 171, 59–84.MathSciNetCrossRefGoogle Scholar
  27. Olsen, L., J. A. Sherratt and P. K. Maini. 1996. A mathematical model for fibro-proliferative wound healing disorders.Bull. Math. Biol.,58, 787–808.zbMATHGoogle Scholar
  28. Olsen, L., P. K. Maini, J. A. Sherratt and B. Marchant. (in press). Simple modelling of extracellular matrix alignment in dermal wound healing. I. Cell flux induced alignment.Google Scholar
  29. Peacock, E. E. 1984Wound Repair. Philadelphia: W. B. Saunders.Google Scholar
  30. Pierce, G. F., D. Brown and T. A. Mustoe. 1991. Quantitative analysis of the inflammatory cell influx, procollagen type I synthesis, and collagen cross-linking in incisional wounds: influence of PDGF-BB and TGF-β1 therapy.J. Lab. Clin. Med. 117, 373–382.Google Scholar
  31. Roberts, A. B. and M. B. Sporn. 1990. The transforming growth factor-βs. InPeptide Growth Factors and Their Receptors, M. B. Sporn and A. B. Roberts (Eds). Berlin: Springer-Verlag, pp. 419–472.Google Scholar
  32. Rothe, F. 1978. Convergence to travelling fronts in semilinear parabolic equations.Proc. R. Soc. Edin. 80A, 213–234.MathSciNetGoogle Scholar
  33. Shah, M., D. M. Foreman and M. W. J. Ferguson. 1992. Control of scarring in adult wounds by neutralising antibody to transforming growth factor β.Lancet 339, 213–214.CrossRefGoogle Scholar
  34. Shah, M., D. M. Foreman and M. W. J. Ferguson. 1994. Neutralizing antibody to TGFβ(1,2) reduces scarring in adult rodents.J. Cell Sci. 107, 1137–1157.Google Scholar
  35. Shah, M., D. M. Foreman and M. W. J. Ferguson. 1995. Neutralization of TGFβ1 and TGFβ2 or exogenous addition of TGFβ3 to cutaneous rat wounds scarring.J. Cell Sci. 108, 985–1002.Google Scholar
  36. Sherratt, J. A. and J. D. Murray. 1990. Models of epidermal wound healing.Proc. R. Soc. Lond. B 241, 29–36.Google Scholar
  37. Sinclair, R. D. and T. J. Ryan. 1994. Proteolytic enzymes in wound healing: the role of enzymatic debridement.Austr. J. Dermatol. 35, 35–41.Google Scholar
  38. Streuli, C. H., C. Schmidhauser, M. Kobrin, M. J. Bissell and R. Derynck. 1993. Extracellular matrix regulates expression of the TGF-β1 gene.J. Cell Biol.,120, 253–260.CrossRefGoogle Scholar
  39. Stricklin, G. P., E. A. Bauer and J. J. Jeffrey. 1978. Human skin collagenase: chemical properties of precursor and active forms.Biochemistry 17, 2331–2337.CrossRefGoogle Scholar
  40. Varedi, M., E. E. Tredget, P. G. Scott, Y. J. Shen and A. Ghahary. 1995. Alteration in cell morphology triggers transforming growth factor beta 1, collagenase, and tissue inhibitor of metalloproteinases I expression in normal and hypertrophic scar fibroblasts.J. Invest. Dermatol. 104, 118–123.CrossRefGoogle Scholar
  41. Whitby, D. J. and M. W. J. Ferguson. 1991. Immunohistochemical localization of growth factors in fetal wound healing.Dev. Biol. 147, 207–215.CrossRefGoogle Scholar
  42. Whitby, D. J. and M. W. J. Ferguson. 1992. Immunohistochemical studies of the extracellular matrix and soluble growth factors in fetal and adult wound healing. InFetal Wound Healing, N. S. Adzick and M. T. Longaker (Eds). New York: Elsevier, pp. 161–176.Google Scholar
  43. Zhang, K., W. Garner, L. Cohen, J. Rodriguez and S. Phan. 1995. Increased type I and type III collagen and transforming growth factor β-1 messenger RNA and protein in hypertrophic burn scar.J. Invest. Dermatol. 104, 750–754.CrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 1997

Authors and Affiliations

  • Paul D. Dale
    • 1
  • Jonathan A. Sherratt
    • 2
  • Philip K. Maini
    • 1
  1. 1.Centre for Mathematical BiologyMathematical InstituteOxfordU.K.
  2. 2.Nonlinear Systems Laboratory, Mathematics InstituteUniversity of WarwickCoventryU.K.

Personalised recommendations