Bulletin of Mathematical Biology

, Volume 59, Issue 6, pp 1029–1046 | Cite as

Model for the alignment of actin filaments in endothelial cells subjected to fluid shear stress

  • A. Suciu
  • G. Civelekoglu
  • Y. Tardy
  • J. -J. Meister


Cultured vascular endothelial cells undergo significant morphological changes when subjected to sustained fluid shear stress. The cells elongate and align in the direction of applied flow. Accompanying this shape change is a reorganization at the intracellular level. The cytoskeletal actin filaments reorient in the direction of the cells' long axis. How this external stimulus is transmitted to the endothelial cytoskeleton still remains unclear. In this article. we present a theoretical model accounting for the cytoskeletal reorganization under the influence of fluid shear stress. We develop a system of integro-partial-differential equations describing the dynamics of actin filaments, the actin-binding proteins, and the drift of transmembrane proteins due to the fluid shear forces applied on the plasma membrane. Numerical simulations of the equations show that under certain conditions, initially randomly oriented cytoskeletal actin filaments reorient in structures parallel to the externally applied fluid shear forces. Thus, the model suggests a mechanism by which shear forces acting on the cell membrane can be transmitted to the entire cytoskeleton via molecular interactions alone.


Actin Filament Actin Cytoskeleton Pulsatile Flow Fluid Shear Stress Actin Bundle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ando, J. and A. Kamiya 1993. Blood flow and vascular endothelial cell function.Front. Med. Biol. Eng. 5, 245–264.Google Scholar
  2. Burridge, K., G. Nuckolls, C. Otey, F. Pavalko, K. Simon and C. Turner. 1990. Actin-membrane interaction in focal adhesions.Cell Diff. Dev. 32, 337–342.CrossRefGoogle Scholar
  3. Civelekoglu, G. and L. Edelstein-Keshet. 1994. Modeling the dynamics of F-actin in the cell.Bull. Math. Biol. 56, 587–616.MATHGoogle Scholar
  4. Cooper, J. A. 1991. The role of actin polymerization in cell motility.Ann. Rev. Physiol. 53, 585–605.CrossRefGoogle Scholar
  5. Davies, P. F. and S. C. Tripathi. 1993. Mechanical stress mechanisms and the cell (an endothelial paradigm).Circ. Res. 72, 239–245.Google Scholar
  6. Dewey, C. F., S. R. Bussolari, M. A. Gimbrone and P. F. Davies. 1981. The dynamic response of vascular endothelial cells to fluid shear stress.J. Biomech. Eng.,103, 177–185.CrossRefGoogle Scholar
  7. Doi, M. and S. F. Edwards. 1986.The Theory of Polymer Dynamics. Oxford: Clarendon Press.Google Scholar
  8. Dufort, P. A. and C. J. Lumsden. 1993. Cellular automaton model of the actin cytoskeleton.Cell Motil. Cytoskel. 25, 87–104.CrossRefGoogle Scholar
  9. Edelstein-Keshet, L. and G. B. Ermentrout. 1990. Models for contact-mediated pattern formation: cells that form parallel arrays.J. Math. Biol.,29, 33–58.MATHMathSciNetCrossRefGoogle Scholar
  10. Franke, R. P., M. Gräfe, H. Schnittler and D. Drenckhahn. 1984. Induction of human vascular endothelial stress fibers by fluid shear stressNature 307, 648–649.CrossRefGoogle Scholar
  11. Fry, D. L. 1976. Hemodynamic forces in atherogenesis. InCerebrovascular Diseases, P. Scheinberg (Ed). New York: Raven Press, pp. 77–95.Google Scholar
  12. Geiger, B. 1989. Cytoskeleton-associated cell contacts.Curr. Opin. Cell Biol. 1, 103–109.CrossRefGoogle Scholar
  13. Girard, P. R., G. Helmlinger and R. M. Nerem. 1993. Shear stress effects on the morphology and cytomatrix of cultured vascular endothelial cells. InPhysical Forces and the Mammalian Cell, J. A. Frangos (Ed.), San Diego, CA: Academic Press pp.193–222.Google Scholar
  14. Helmlinger, G., R. V. Geiger, S. Schreck and R. M. Nerem. 1991. Effects of pulsatile flow on cultured vascular endothelial cell morphology.J. Biomech. Eng. 113, 123–131.Google Scholar
  15. Ishihara, A. and K. Jacobson. 1993. A closer look at how membrane proteins move.Biophys. J. 65, 1754–1755.Google Scholar
  16. Jammey, P. A., S. Hvidt, J. Käs, A. M. D. Lerche, E. Sackmann, M. Schliwa and T. P. Stossel. 1994. The mechanical properties of actin gel.J. Biol. Chem.,269, 32503–32513.Google Scholar
  17. Käs, J., H. Strey, M. Bärmann and E. Sackmann. 1993. Direct measurement of the wave-vector-dependent bending stiffness of freely flickering actin filaments.Europhys. Lett.,21, 865–870.Google Scholar
  18. Kaufmann, S., J. Käs, W. H. Goldmann, E. Sackmann and G. Isenberg. 1992. Talin anchors and nucleates actin filaments at lipid membranes.FEBS Lett.,314, 203–205.CrossRefGoogle Scholar
  19. Ku, D. N., D. P. Giddens, C. K. Zarins and S. Glagov. 1985. Pulsatile flow and atherosclerosis in the human carotid bifurcation.Arteriosclerosis,5, 293–302.Google Scholar
  20. Kusumi, A., Y. Sako and M. Yamamoto. 1993. Confined lateral diffusion of membrane receptors as studied by single particle tracking (nanovid microscopy): effects of calcium-induced differentiation in cultured epithelial cells.Biophys. J. 65, 2021–2040.CrossRefGoogle Scholar
  21. Langille, B. L. and S. L. Adamson. 1981. Relationship between blood fow direction and endothelial cell orientation at arterial branch sites in rabbits and mice.Circ. Res.,48, 481–488.Google Scholar
  22. Levesque, M. J. and R. M. Nerem. 1985. The elongation and orientation of cultured endothelial cells in response to shear stress.J. Biomech. Eng. 107, 341–347.CrossRefGoogle Scholar
  23. Luby-Phelps, K., D. L. Taylor and F. Lanni. 1986. Probing the structure of cytoplasm.J. Cell Biol. 102, 2015–2022.CrossRefGoogle Scholar
  24. Luna, E. J. and A. L. Hitt. 1992. Cytoskeleton-plasma membrane interactions.Science 258, 955–964.Google Scholar
  25. Meyer, R. K. and U. Aebi. 1990. Bundling of actin filaments by alpha-actin depends on its molecular length.J. Cell Biol. 110, 2013–2024.CrossRefGoogle Scholar
  26. National Institutes of Health-United States. 1981.Arteriosclerosis 1981. Bethesda, MD: National Heart, Lung and Blood Institute, National Institutes of Health.Google Scholar
  27. Ookawa, K., M. Sato and N. Ohshima 1993. Time course changes in cytoskeletal structures of cultured endothelial cellsFront. Med. Biol. Eng. 5, 121–125.Google Scholar
  28. Otey, C. A., F. M. Pavalko and K. Burridge. 1990. An interaction between alpha-actinin and the β-1-integrin subunit in vitro.J. Cell Biol. 111, 721–729.CrossRefGoogle Scholar
  29. Pavalko F. M. and C. A. Otey. 1994. Role of adhesion molecule cytoplasmic domains in mediating interactions with the cytoskeleton.Proceedings of the Society for Experimental Biology & Medicine 205, 282–293.Google Scholar
  30. Pollard, T. D. and J. A. Cooper. 1986. Actin and actin-binding proteins: a critical evaluation of mechanisms and functions.Ann. Rev. Biochem. 55, 987–1035.CrossRefGoogle Scholar
  31. Press, W. H., B. P. Flannery, S. A. Teukolsky and W. T. Vetterling. 1987.Numerical Recipes: The Art of Scientific Computing. Cambridge: Cambridge University Press.Google Scholar
  32. Satcher, R. L. 1993. A mechanical model of vascular endothelium. Ph. D. thesis, MIT, Cambridge, MA.Google Scholar
  33. Sherratt, J. A. and J. Lewis, 1993. Stress-induced alignment of actin filaments and the mechanics of cytogel.Bull. Math. Biol. 55, 637–654.MATHGoogle Scholar
  34. Stossel, T. P., C. Chaponnier, R. M. Ezzell,et al. 1985. Nonmuscle actin-binding proteins.Annu. Rev. Cell Biol. 1, 353–402.CrossRefGoogle Scholar
  35. Wang, N., J. P. Butler and D. E. Ingber. 1993. Mechanotransduction across the cell surface and through the cytoskeleton.Science 260, 1124–1127.Google Scholar
  36. Wechezak, A. R., R. F. Viggers and L. R. Sauvage. 1985. Fibronectin and F-actin redistribution in cultured endothelial cells exposed to shear stress.Lab. Invest. 53, 639–647.Google Scholar
  37. Weeds, A. 1982. Actin-bonding proteins: regulators of cell architecture and motility.Nature 296, 811–816.CrossRefGoogle Scholar
  38. Wegner, A. 1976. Head to tail polymerization of actin.J. Mol. Biol. 108, 139–150.Google Scholar
  39. Wong, A. J., T. D. Pollard and I. M. Herman. 1983. Actin filament stress fibers in vascular endothelial cells in vivo.Science 167, 867–869.Google Scholar
  40. Zhao, S., A. Suciu, T. Ziegler, J. E. Moore, E. Bürki, J.-J. Meister and H. R. Brunner. 1995. Synergistic effects of fluid shear stress and cyclic circumferential stretch on vascular endothelial cell morphology and cytoskeleton.Arterioscler. Thromb. Vasc. Biol. 15, 1781–1786.Google Scholar

Copyright information

© Society for Mathematical Biology 1997

Authors and Affiliations

  • A. Suciu
    • 1
  • G. Civelekoglu
    • 1
  • Y. Tardy
    • 1
  • J. -J. Meister
    • 1
  1. 1.Biomedical Engineering LaboratorySwiss Federal Institute of TechnologySwitzerland

Personalised recommendations