Bulletin of Mathematical Biology

, Volume 45, Issue 5, pp 781–792 | Cite as

The dynamics of symmetric nets

  • A. Muir
  • M. W. Warner


The role of symmetry in simplifying the theory of complex neural systems is argued. When the structural symmetries of a network are expressed as an ismorphism group, implications emerge for the dynamics. Various qualitative possibilities concerning stability of uniform motion in homogeneous nets are discussed and an approach to neural hierarchies is outlined.


Structural Symmetry Alpha Rhythm Uniform Motion Isomorphism Group Formal Neuron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amari, S. 1974. “A Method of Statistical Neurodynamics.”Kybernetik 14, 201–215.MATHMathSciNetGoogle Scholar
  2. Arbib, M. A. 1969.Theories of Abstract Automata. New York: Prentice-Hall.MATHGoogle Scholar
  3. Cowan, J. D. 1982. “Spontaneous Symmetry-breaking in Large Scale Nervous Activity.”Int. J. Quantum Chem. XXII, 1059–1082.CrossRefGoogle Scholar
  4. Ermentrout, G. B. and J. D. Cowan. 1979. “A Mathematical Theory of Visual Hallucination Patterns.”Biol. Cybernet. 34, 137–150.MATHMathSciNetCrossRefGoogle Scholar
  5. — and —. 1980. “Secondary Bifurcation in Neuronal Nets.”SIAM J. appl. Math. 39, 323–340.MATHMathSciNetCrossRefGoogle Scholar
  6. Griffith, J. S. 1971.Mathematical Neurobiology. London: Academic Press.MATHGoogle Scholar
  7. Hartline, H. K. and F. Ratcliff. 1972. “Inhibitory Interaction in the Retina ofLimulus.” InHandbook of Sensory Physiology, Ed. M. G. F. Fuortes, Vol. VII/2, pp. 381–447. Berlin: Springer.Google Scholar
  8. Harth, E. M., T. J. Csermely, B. Beck and R. D. Lindsay. 1970. “Brain Functions and Neural Dynamics.”J. theor. Biol. 26, 93–120.CrossRefGoogle Scholar
  9. Hebb, D. O. 1949.The Organization of Behaviour. New York: Wiley.Google Scholar
  10. Kobuchi, Y. 1976. “Signal Propogation in 2-dimensional Threshold Cellular Space.”J. math. Biol. 3, 297–312.MATHMathSciNetGoogle Scholar
  11. Minsky, M. 1969. “The Society Theory.” InA.I. An MIT Perspective, Ed. P. H. Winston and Brown, Vol. 1. Cambridge, MA: MIT Press.Google Scholar
  12. Muir, A. 1979. “A Simple Case of the Wilson-Cowan Equations.”Biophys. J. 27, 267–276.Google Scholar
  13. — 1981. “The Construction of Homogeneous Nets.”Bull. math. Biol. 43, 415–426.MATHMathSciNetCrossRefGoogle Scholar
  14. — and M. W. Warner. 1981. “The Decomposition of Tolerance Automata.”Kybernetes 9, 265–273.MathSciNetGoogle Scholar
  15. Palm, G. 1981. “Towards a Theory of Cell Assemblies.”Biol. Cybernet. 39, 181–194.MATHMathSciNetCrossRefGoogle Scholar
  16. — and V. Braitenberg. 1979. “Tentative Contributions of Neuroanatomy to Nerve Net Theories.” InProgress in Cybernetics and Systems Research, Ed. R. Trappl, G. J. Klir and L. Ricciardi, Vol. 3, p. 369. London: Advance Publ.Google Scholar
  17. Pribram, K. H. 1971.Languages of the Brain. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
  18. Sattinger, D. H. 1978. “Group Representation Theory, Bifurcation Theory and Pattern Formation.”J. funct. Anal. 28, 58–101.MATHMathSciNetCrossRefGoogle Scholar
  19. Szenthagothai, J. and M. A. Arbib. 1974. “Conceptual Models of Neural Organisation.”N.R.P. Bull. 12, 305–510.Google Scholar
  20. van Rotterdam, A., F. H. Lopes da Silva, J. van den Ende, M. A. Viergever and A. J. Hermans 1982. “A Model of the Spatial-Temporal Characteristics of the Alpha Rhythm.”Bull. math. Biol. 44, 283–305.MATHMathSciNetCrossRefGoogle Scholar
  21. Warner, M. W. 1981. “Tolerance Nets.”Bull. math. Biol. 43, 641–650.MATHMathSciNetGoogle Scholar
  22. Wilson, H. R. and J. D. Cowan. 1972. “Excitatory and Inhibitory Interactions in Localized Populations of Model Neurons.”Biophys. J. 12, 1–24.CrossRefGoogle Scholar
  23. — and —. 1973. “A Mathematical Theory of the Functional Dynamics of Cortical and Thalmic Nervous Tissue.”Kybernetik 13, 55–80.MATHCrossRefGoogle Scholar
  24. Zeeman, E. C. 1961. “The Topology of the Brain and Visual Perception.” InThe Topology of 3-manifolds, Ed. M. K. Fort, pp. 240–256. New York: Prentice-Hall.Google Scholar
  25. Zvonkin, A. K. and L. A. Levin. 1970. “The Complexity of Finite Objects and the Development of the Concepts of Information and Randomness by Means of the Theory of Algorithms.”Russ. Math. Surveys 25, 83–124.MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 1983

Authors and Affiliations

  • A. Muir
    • 1
  • M. W. Warner
    • 1
  1. 1.The City UniversityLondonU.K.

Personalised recommendations