Bulletin of Mathematical Biology

, Volume 47, Issue 2, pp 239–262 | Cite as

Polynucleotide evolution and branching processes

  • Lloyd Demetrius
  • Peter Schuster
  • Karl Sigmund


The theory of multitype branching processes is applied to the kinetics of polynucleotide replication. The results obtained are compared with the solutions of the deterministic differential equations of conventional chemical kinetics.


Polynucleotide Selection Equation Deterministic Equation Error Threshold Dominant Eigenvalue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Athreya, K. B. and P. E. Ney. 1972.Branching Processes. Berlin: Springer.Google Scholar
  2. Biebricher, C. K., M. Eigen and W. C. Gardiner, Jr. 1983. “Kinetics of RNA Replication.”Biochemistry 22, 2544–2559.CrossRefGoogle Scholar
  3. Billingley, P. 1965.Ergodic Theory and Information. New York: J. Wiley.Google Scholar
  4. Demetrius, L. 1983. “Statistical Mechanics and Population Biology.”J. Statist. Phys. 30, 729–773; “Selection and Evolution in Macromolecular Systems.”J. theor. Biol. 103, 619–643.MathSciNetCrossRefGoogle Scholar
  5. Ebeling, W. and R. Fesitel 1977. “Stochastic Theory of Molecular Replication Processes with Selection Character.”Ann. Phys. 34, 81–90.Google Scholar
  6. — and M. A. Jiménez-Montano. 1980.Math. Biosci. 52, 53–71.MATHCrossRefGoogle Scholar
  7. Eigen, M. 1971. “Self-organisation of Matter and the Evolution of Biological Macromolecules.”Naturwissenschaften 58, 465–526.CrossRefGoogle Scholar
  8. — and P. Schuster. 1979.The Hypercycle. A Principle of Natural Self-organisation. Berlin: Springer.Google Scholar
  9. Eigen, M., J. S. McCaskill and P. Schuster. 1984. “Physics of Evolutionary Optimization.” To be published.Google Scholar
  10. Gassner, B. and P. Schuster. 1982. “Model Studies on RNA Replication I. The Quasiequilibrium Assumption and the Analysis of a Simplified Mechanism.”Mh. Chem. 113, 237–263.Google Scholar
  11. Harris, T. E. 1963.The Theory of Branching Processes. Berlin: Springer.Google Scholar
  12. Heinrich, R. and T. Sonntag. 1981. “Analysis of the Selection Equations for a Multivariable Population Model. Deterministic and Stochastic Solutions and Discussion of the Approach for Populations of Self-reproducing Biochemical Networks.”J. theor. Biol. 93, 325–361.MathSciNetCrossRefGoogle Scholar
  13. Inagaki, H. 1982. “Selection under Random Mutations in Stochastic Eigen Model.”Bull. math. Biol. 44, 17–28.MATHMathSciNetCrossRefGoogle Scholar
  14. Jagers, P. 1975.Branching Processes with Biological Applications. London: Wiley.Google Scholar
  15. Jones, B. L., R. H. Enns and S. S. Rangnekar. 1976. “On the Theory of Selection of Coupled Macromolecular Systems.”Bull. math. Biol. 38, 15–28.MATHCrossRefGoogle Scholar
  16. — and H. K. Leung. 1981. “Stochastic Analysis of a Nonlinear Model for Selection of Biological Macromolecules.”Bull. math. Biol. 43, 665–680.MATHMathSciNetGoogle Scholar
  17. Karlin, S. 1974.A First Course in Stochastic Processes, 2nd edn. New York: Academic Press.Google Scholar
  18. Kesten, H. and B. P. Stigum. 1966. “A Limit Theorem for Multidimensional Galton-Watson Processes.”Ann. Math. Statist. 37, 1211–1223.MATHMathSciNetGoogle Scholar
  19. Küppers, B. O. 1979. “Towards an Experimental Analysis of Molecular Self-organisation and Precellular Darwinian Evolution.”Naturwissenschaften 66, 228–243.CrossRefGoogle Scholar
  20. McCaskill, J. 1984a “A Localization Threshold for Macromolecule Quasispecies from Continuously Distributed Replication Rates.”J. Chem. Phys. 80, 5194–5202.MathSciNetCrossRefGoogle Scholar
  21. — 1984b. “A Stochastic Theory of Macromolecular Evolution.”Biol. Cybernet. 50, 63–73.MATHCrossRefGoogle Scholar
  22. McQarrie, D. A. 1967. “Stochastic Approach to Chemical Kinetics.”J. appl. Prob. 4, 413–478.CrossRefGoogle Scholar
  23. Schuster, P. 1981. “Prebiotic Evolution.” InBiochemical Evolution, Ed. H. Gutfreund, pp. 15–87. Cambridge: Cambridge University Press.Google Scholar
  24. — 1983. “Selection and Evolution in Molecular Systems—A Combined Approach by Stochastic and Deterministic Chemical Kinetics.” InStochastic Processes Applied to Physics and Other Related Fields, Eds. B. Gomez, S. M. More, A. M. Rodriguez-Vargas and A. Rueda, pp. 134–59. Singapore: World Scientific.Google Scholar
  25. — and K. Sigmund. 1984a. “Random Selection and the Neutral Theory—Sources of Stochasticity in Replication.” InStochastic Phenomena and Chaotic Behaviour in Complex Systems, Ed. P. Schuster, pp. 186–207. Berlin: Springer.Google Scholar
  26. — and — 1984b. “Random, Selection—A Simple Model Based on Linear Birth and Death Processes.”Bull. math. Biol. 46, 11–17.MATHGoogle Scholar
  27. Swetina, J. and P. Schuster. 1982. “Self-replication with Errors—A Model for Polynucleotide Replication.”Biophys. Chem. 16, 329–345.CrossRefGoogle Scholar
  28. Thompson, C. J. and J. L. McBride. 1974. “On Eigen's Theory of the Self-Organisation of Matter and the Evolution of Biological Macromolecules.”Math. Biosci. 21, 127–142.MATHMathSciNetCrossRefGoogle Scholar
  29. Tuljapurkar, S. D. (1982. “Why Use Population Entropy? It Determines the Rate of Convergence.”J. Math. Biol. 13, 325–337.MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 1985

Authors and Affiliations

  • Lloyd Demetrius
    • 1
  • Peter Schuster
    • 2
  • Karl Sigmund
    • 3
    • 4
  1. 1.Max-Planck-Institut für Biophysikalische ChemieGöttingenF.R.C.
  2. 2.Institut für Theoretische Chemie und StrahlenchemieUniversität WienWienAustria
  3. 3.Institut für MathematikUniversität WienWienAustria
  4. 4.IIASALaxenburgAustria

Personalised recommendations