Bulletin of Mathematical Biology

, Volume 47, Issue 4, pp 565–589 | Cite as

A method for the approximation of the relative humidity in the upper human airways

  • G. A. Ferron
  • B. Haider
  • W. G. Kreyling


In order to determine the growth of inhaled aerosol particles in the human respiratory tract the relative humidity in a lung model has been calculated using a numerical method. The computations take into account different types of airflows, enhanced transport mechanisms and an optimized wall temperature profile in the upper airways. These parameters are varied to fit experimental temperature data. Under certain conditions the corresponding relative humidity shows a maximum near the first bifurcation, which exceeds the final humidity in the alveoli. This high humidity forces dry NaC1 particles with diameters less than 0.5 μm to grow to their maximum size in the first bronchi. Thereafter the droplets loose water and reach their final size in the terminal bronchioles.


Aerosol Particle Human Airway Bronchial Tree Water Vapor Concentration FERRON 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. D'Ans Lax (Ed.). 1967.Taschenbuch für Chemiker und Physiker, Vol. 1. Berlin: Springer Verlag.Google Scholar
  2. Beal, S. K. 1970. “Deposition of Particles in Turbulent Flow on Channel or Pipe Walls.”Nucl. Sci. Engng 40, 1–11.Google Scholar
  3. Berezin, I. S. and N. P. Zhidkow. 1965.Computing Methods. Oxford: Pergamon Press.MATHGoogle Scholar
  4. Burch, G. E. 1945. “Rate of Water and Heat Loss from the Respiratory Tract of Normal Subjects in a Subtropical Climate.”Archs intern. Med. 76, 315–327.Google Scholar
  5. Christie, R. V. and A. L. Loomis. 1932. “The Pressure of Aqueous Vapor in the Alveolar Air.”J. Physiol. 77, 35–48.Google Scholar
  6. Cole, P. 1935. “Some Aspects of Temperature, Moisture and Heat Relationships in the Upper Respiratory Tract.”J. Laryngol. 67, 449–456.Google Scholar
  7. —, 1953b “Further Observations on the Conditioning of the Respiratory Air.”J. Laryngol. 67, 669–681.Google Scholar
  8. —, 1954. “Recording of Respiratory Air Temperature.”J. Laryngol. 68, 295–307.Google Scholar
  9. Cramer, I. I. 1957. “Heat and Moisture Exchange of Respiratory Mucous Membrane.”Ann. Otol. Rhinol. Lar. 66, 327–343.Google Scholar
  10. Dekker, E. 1961. “Transition Between Laminar and Turbulent Flow in Human Trachea.”J. appl. Physiol. 16, 1060–1064.Google Scholar
  11. Derjaguin, B. V., I. S. Kurghin, L. A. Rosenzweig and V. A. Fedoseyev. 1971. “Study on Passivation of Condensation Growth of Drops of Water and Salt Solutions.”J. Coll. Interf. Sci. 37, 484–494.CrossRefGoogle Scholar
  12. Dery, R., J. Pelletier, A. Jacques, M. Clavet and J. J. Houde. 1967. “Humidity in Anaesthesiology III. Heat and Moisture Patterns in the Respiratory Tract During Anaesthesia with the Semi-closed System.”Can. Anaesth. Soc. J. 14, 287–298.CrossRefGoogle Scholar
  13. Diem, K. (Ed.). 1968.Scientific Tables, 6th edn. Ardsley: Geigy Pharmaceuticals.Google Scholar
  14. Ferron, G. A. 1977. “The Size of Soluble Aerosol Particles as a Function of the Humidity of the Air. Application to the Human Respiratory Tract.”J. Aerosol Sci. 8, 251–267.CrossRefGoogle Scholar
  15. Ferrus, L., H. Guenard, G. Vardon and P. Varene. 1980. “Respiratory Water Loss.”Respir. Physiol. 39, 367–381.CrossRefGoogle Scholar
  16. Friedlander, S. K. 1977.Smoke, Dust and Hase. Fundamentals of Aerosol Behavior, p. 302. New York: John Wiley.Google Scholar
  17. Getz, L. L. 1968. “Relationship Between Ambient Temperature and Respiratory Water Loss of Small Mammals.”Comp. Biochem. Physiol. 24, 335–342.CrossRefGoogle Scholar
  18. Hänel, G. 1975. “Beitrag zur Deposition atmosphärischer Aerosolteilchen im menschlichen Atemtrakt und in der Lunge.”Proc. Annual Congress of the Association for Aerosol Research, V. Böhlau and H. Straubel (Eds), pp. 146–149. Bad Soden.Google Scholar
  19. Hofman, W. F. and G. D. Riegle. 1977. “Respiratory Evaporative Heat Loss Regulation in Shorn and Unshorn Sheep During Mild Heat Stress.”Respir. Physiol. 30, 339–348.CrossRefGoogle Scholar
  20. Holländer, W. 1978. Abstracts of the American Industrial Hygiene Association Conference.Chicago. Abstract Pape No. 157, pp. 90–91.Google Scholar
  21. Holman, J. P. 1976.Heat Transfer. Tokyo: McGraw-Hill Kogakusha.Google Scholar
  22. ICRP 23. 1975.Report of the Task Group on Reference Man. Oxford: Pergamon Press.Google Scholar
  23. Ingelstedt, S. 1956. “Studies on the Conditioning of Air in the Respiratory Tract.”Acta. oto-lar. Suppl. 131.Google Scholar
  24. — and N. G. Toremalm. 1960. “Aerodynamics Within the Larynx and Trachea.”Acta oto-lar.S158, 81–92.Google Scholar
  25. Jackson, D. C. and K. Schmidt-Nielsen. 1964. “Countercurrent Heat Exchange in the Respiratory Passages.”Proc. natn. Acad. Sci. U.S.A. 51, 1192–1197.CrossRefGoogle Scholar
  26. Jacob, M. 1950.Heat Transfer. New York: John Wiley.Google Scholar
  27. Jähnert, B. 1982. “Wasserdampfkondensation an hygroskopischen Aerosolteilchen.” Dissertation, Goethe University, Frankfurt am Main.Google Scholar
  28. Kiss, F., J. Szentagothai and I. Munkacsi. 1960. “Anatomischer Atlas des menschlichen Korpers.” Leipzig: VEB Georg Thieme Verlag.Google Scholar
  29. Kohlrausch, F. 1968.Praktische Physik, Band 3. Stuttgart: B. G. Teubner.Google Scholar
  30. Landahl, H. D. 1950. “On the Removal of Air-borne Droplets by the Human Respiratory Tract: II. The Nasal Passages.”Bull. math. Biophys. 12, 161–169.MathSciNetGoogle Scholar
  31. Langman, V. A., G. M. O. Maloiy, K. Schmidt-Nielsen and R. C. Schroter. 1979. “Nasal Heat Exchange in the Giraffe and Other Large Mammals.”Respir. Physiol. 37, 325–333.CrossRefGoogle Scholar
  32. Martin, D., W. Jacobi. 1972. “Diffusion Deposition of Small-sized Particles in the Bronchial Tree.”Health Phys. 23, 23–29.MATHCrossRefGoogle Scholar
  33. McCutchan, J. W. and C. L. Taylor. 1951. “Respiratory Heat Exchange with Varying Temperature and Humidity of the Inspired Air.”J. appl. Physiol. 4, 121–135.Google Scholar
  34. Moritz, A. R. and J. R. Weisiger. 1945. “Effects of Cold Air on the Air Passages and Lungs.”Archs intern. Med. 75, 233–240.Google Scholar
  35. Murrish, D. E. and K. Schmidt-Nielsen. 1970. “Exhaled Air Temperature and Water Conservation in Lizards.”Respir. Physiol. 10, 151–158.CrossRefGoogle Scholar
  36. —, 1973. “Respiratory Heat and Water Exchange in Penguins.”Respir. Physiol. 19, 262–270.CrossRefGoogle Scholar
  37. Olson, D. E., G. A. Dart and G. F. Filley. 1970. “Pressure Drop and Fluid Flow Regime or Air Inspired into the Human Lung.”J. appl. Physiol. 28, 482–494.Google Scholar
  38. —, M. F. Sudlow, K. Horsfield and G. F. Filley. 1973. “Convective Pattern of Flow During Inspiration.”Archs. intern. Med. 131, 51–57.CrossRefGoogle Scholar
  39. Perwitzschky, R. 1928. “Die Temperatur und Feuchtigkeitsverhältnisse der Atemluft in den Luftwegen.”Arch. Ohrenheil. 117, 1–36.Google Scholar
  40. Proctor, D. F., I. Andersen and G. R. Lundqvist. 1973. “Clearance of Inhaled Particles From the Nose.”Archs intern. Med. 131, 132–139.CrossRefGoogle Scholar
  41. —— and —. 1977. “Human Nasal Mucosal Function at Controlled Temperatures.”Respir. Physiol. 30, 109–124.CrossRefGoogle Scholar
  42. Schmid, W. D. 1976. “Temperature Gradients in the Nasal Passage of Some Small Mammals.”Comp. Biochem. Physiol. 54A, 305–308.Google Scholar
  43. Schmidt-Nielsen, K. F., F. R. Hainsworth and D. E. Murrisch. 1970. “Countercurrent Heat Exchange in the Respiratory Passages: Effect on Water and Heat Balance.”Respir. Physiol. 9, 263–276.CrossRefGoogle Scholar
  44. —, 1981. “Countercurrent Systems in Animals.”Scient. Am. 244, 100–106.CrossRefGoogle Scholar
  45. Task Group on Lung Dynamics. 1966. “Deposition and Retention Models for Internal Dosimetry of the Human Respiratory Tract.”Health Phys. 12, 173–207.Google Scholar
  46. Verzar, F., J. Keith and V. Parchet. 1953. “Temperatur und Feuchtigkeit der Luft in den Atemwegen.”Pflügers Archiv 257, 400–416.CrossRefGoogle Scholar
  47. Weast, R. C. and M. J. Astle. 1979.Handbook of Chemistry and Physics, 60th edn. Boca Raton, Florida: CRC Press.Google Scholar
  48. Webb, P. 1951. “Air Temperatures in Respiratory Tracts of Resting Subjects in Cold.”J. appl. Physiol. 4, 378–382.Google Scholar
  49. Weibel, E. R. 1963.Morphometry of the Human Lung. Berlin: Springer Verlag.Google Scholar
  50. Yeh, H.-C. and G. M. Schum. 1980. “Models of the Human Lung Airways and their Application to Inhaled Particle Deposition.”Bull. math. Biol. 42, 461–480.MATHCrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 1985

Authors and Affiliations

  • G. A. Ferron
    • 1
  • B. Haider
    • 1
  • W. G. Kreyling
    • 1
  1. 1.Institut für StrahlenschutzGesellschaft für Strahlen- und Umweltforschung mbH, MünchenNeuherbergF.R.G.

Personalised recommendations