Advertisement

Bulletin of Mathematical Biology

, Volume 52, Issue 1–2, pp 73–97 | Cite as

Discussion: McCulloch-Pitts and related neural nets from 1943 to 1989

  • Jack D. Cowan
Neurophysiology

Abstract

The McCulloch-Pitts paper “A Logical Calculus of the Ideas Immanent in Nervous Activity” was published in theBulletin of Mathematical Biophysics in 1943, a decade before the work of Hodgkin, Huxley, Katz and Eccles. The McCulloch-Pitts neuron is an extremely simplified representation of neural properties, based simply on the existence of a threshold for the activation of an action potential.

Keywords

Motor Unit Receptive Field Logical Function Associative Memory Synaptic Weight 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. Amit, D. J., H. Gutfreund and H. Sompolinsky. 1985. Storing infinite numbers of patterns in a spin-glass model of neural networks.Phys. Rev. Lett. 55, 1530–1533.CrossRefGoogle Scholar
  2. Andersen, R. and D. Zipser. 1987. A neural net model of posterior parietal cortex.Neurobiology of neocortex. Dahlem Conferenz, Vol.50, Berlin.Google Scholar
  3. Anderson, J. A. 1968. A memory storage model utilizing spatial correlation functions.Kybernetik 5, 113–119.CrossRefGoogle Scholar
  4. Ashby, W. R. 1950. The stability of a randomly assembled nerve-network.EEG clin. Neurophysiol. 2, 471–482.CrossRefGoogle Scholar
  5. Barlow, H. B. 1972. Single units and sensation: a neuron doctrine for perceptual psychology?Perception 1, 371–394.Google Scholar
  6. Baum, E. B., J. Moody and F. Wilczek. 1988. Internal representation for associative memory.Biol. Cybern. 59, 217–228.MATHCrossRefGoogle Scholar
  7. Beurle, R. L. 1956. Properties of a mass of cells capable of regenerating pulse.Phil. Trans. R. Soc. Lond. B240, 55–94.Google Scholar
  8. Brindley, G. S. 1967. The classification of modifiable synapses and their use in models for conditioning.Proc. Roy. Soc. Lond. B168, 361–376.CrossRefGoogle Scholar
  9. Caianiello, E. R. 1961. Outline of a theory of thought processes and thinking machines.J. theor. Biol. 1, 204–235.MathSciNetCrossRefGoogle Scholar
  10. Cowan, J. D. 1965. The problem of organismic reliability.Prog. Brain Res. 17, 9–63; 1968. Statistical mechanics of nervous nets.Neural Networks, E. R. Caianiello (ed.), pp. 181–188, Berlin: Springer: 1971. A statistical mechanics of nervous activity. In Proceedings of the American Mathematical Society Symposium—Mathematical Questions in Biology (M. Gerstenhaber (ed.). Providence, RI: American Mathematical Society.Google Scholar
  11. Cragg, B. G. and H. N. V. Temperley. 1954. The organisation of neurones: a cooperative analogy.EEG clin. Neurophysiol 6, 85–92; 1955. Memory: the analogy with ferromagnetic hysteresis.Brain 78, 304–316.CrossRefGoogle Scholar
  12. Craik, K. J. W. 1943.The Nature of Explanation. Cambridge University Press.Google Scholar
  13. Durbin, R. and D. J. Willshaw. 1987. An analogue approach to the travelling salesman problem using an elastic net method.Nature 326, 689–691.CrossRefGoogle Scholar
  14. Eccles, J. C. 1957.The Physiology of Nerve Cells. Johns Hopkins University Press, Baltimore; 1964.The Physiology of Synapses. Berlin: Springer.Google Scholar
  15. Ermentrout, G. B. and J. D. Cowan. 1979. Temporal oscillations in neural networks.J. math. Biol. 7, 265–280; 1979b. A mathematical theory of visual hallucination patterns.Biol. Cybernet. 34, 137–150.MATHMathSciNetCrossRefGoogle Scholar
  16. Gabor, D. 1969. Associative holographic memories.IBM J. Res. Dev. 13, 156–159.CrossRefGoogle Scholar
  17. Hebb, D. O. 1949.The Organization of Behavior. New York: Wiley.Google Scholar
  18. Hopfield, J. J. 1982. Neural networks and physical systems with emergent collective computational abilities.PNAS 79, 2554–2558.MathSciNetCrossRefGoogle Scholar
  19. Hopfield, J. J. and D. W. Tank. 1985. ‘Neural’ computation and constraint satisfaction problems and the traveling salesman.Biol. Cybern. 55, 141–152.MathSciNetGoogle Scholar
  20. Kirkpatrick, S., C. D. Gelatt, Jr and M. P. Vecchi. 1983. Optimization by simulated annealing.Science 229, 671–679.MathSciNetGoogle Scholar
  21. Kohonen, T. 1977.Associative Memory—A System-Theoretical Approach. Berlin: Springer; 1984.Self-organization and Associative Memory. Berlin: Springer.MATHGoogle Scholar
  22. Lasalle, J. and S. Lefschetz. 1961.Stability by Liapunov's Direct Method with Applications. New York: Academic Press.Google Scholar
  23. Le Cun, Y. 1985. A learning scheme for asymmetric threshold networks.Proc. Cognitiva 85, 599–607.Google Scholar
  24. Lin, S. and B. W. Kernighan. 1973. An algorithm for the TSP problem.Oper. Res. 21, 498–522.MATHMathSciNetGoogle Scholar
  25. Little, W. A. and G. L. Shaw. A statistical theory of short and longer-term memory.Behav. Biol. 14, 115–133.Google Scholar
  26. Marr, D. 1969. A theory of cerebellar cortex.J. Physiol. Lond. 202, 437–470; 1971. Simple memory: a theory for archicortex.Phil. Trans. R. Soc. Lond. B262, 23–81.Google Scholar
  27. McCulloch, W. S. 1961. What Is a Number, that a Man May Know It, and a Man, that He May Know a Number?Gen. Semantics Bull. 26/27, 7–18;Embodiments of Mind. Cambridge, MA: MIT Press.Google Scholar
  28. McCulloch, W. S. and W. Pitts. 1943. A logical calculus of the ideas immanent in nervous activity.Bull. math. Biophys. 5, 115–133.MATHMathSciNetGoogle Scholar
  29. McEliece, R. J., E. C. Posner, E. R. Rodemich and S. S. Venkatesh. 1987. The capacity of the Hopfield associative memory.IEEE Trans. Inf. Theor. 1, 33–45.MathSciNetGoogle Scholar
  30. Minsky, M. and S. Papert. 1969.Perceptrons: An Introduction to Computational Geometry. Cambridge, MA: MIT Press.MATHGoogle Scholar
  31. von Neumann, J. 1951. The general and logical theory of automata. In:Cerebral Mechanisms in Behavior (The Hixon Symposium), L. A. Jefferies (ed.). New York: Wiley; 1956. Probabilistic logics and the synthesis of reliable organisms from unreliable components.Automata Studies, C.E. Shannon and J. McCarthy (eds), pp. 43–98. Princeton, NJ: Princeton University Press.Google Scholar
  32. Novikoff, A. 1963. On convergence proofs for Perceptrons,Symposium on Mathematical Theory of Automata, J. Fox (ed.), pp. 615–622. New York: Polytechnic Press.Google Scholar
  33. Parker, D. B. 1986. A comparison of algorithms for neuron-like cells. Proceedings of the AIP Conference, Vol.151Neural Networks for Computing, J. S. Denker.Google Scholar
  34. Rescorla, R. A. and A. R. Wagner (eds); A theory of Pavlovian conditioning: variations in the effectiveness of reinforcement and nonreinforcement.Classical Conditioning II. A. H. Black and W. F. Prokasy (eds), pp. 64–99. New York: Appleton-Century-Crofs.Google Scholar
  35. Rosenblatt, F. 1958. The Perceptron, a probabilistic model for information storage and organization in the brain.Psych. Rev. 62, 386–408; 1961.Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms. Washington DC: Spartan Books.CrossRefGoogle Scholar
  36. Rosenbleuth, A., N. Wiener and J. Bigelow. 1943.Behaviour, purpose and teleology.Phil. Sci. 10, 18–24.CrossRefGoogle Scholar
  37. Rumelhart, D. E., G. E. Hinton and R. J. Williams. 1986a. Learning internal representations by error propagation.Parallel Distributed Processing: Explorations in the Microstructure of (Cognition,1,Foundations. D. E. Rumelhart and J. L. McClelland (eds). Cambridge, MA: MIT Press. 1986b). Learning representations by back-propagating errors.Nature 323, 533–536.Google Scholar
  38. Sbitnev, V. I. 1982. The origin and evolution of a strange attractor in a system of coupled oscillators. U.S.S.R. Acad. Sci., Leningrad Nucl, Phys. Inst. (Preprint).Google Scholar
  39. Sejnowski, T. and C. R. Rosenberg, 1986. NETtalk, a parallel network that learns to read aloud. Tech. Rep. JHU/EECS-86/01. Baltimore, MD: Johns Hopkins University.Google Scholar
  40. Sheffer, H. M. 1913. A set of five independent postulates for Boolean algebras, with application to logical constants.Trans. Am. math. Soc. 14, 481–488.MATHMathSciNetCrossRefGoogle Scholar
  41. Sherrington, D. and S. Kirkpatrick. 1975. Spin Glasses.Phys. Rev. Lett. 35, 1972.CrossRefGoogle Scholar
  42. Steinbuch, K. 1961. Die Lernmatrix.Kybernetik 1, 36–45.MATHCrossRefGoogle Scholar
  43. W. K. Taylor, 1956. Electrical simulation of some nervous sytem functional activities.Information Theory 3, E. C. Cherry (ed.), pp. 314–328. London: Butterworths.Google Scholar
  44. Turing, A. M. 1936. On computable numbers with an application to the Entscheidüngsproblem.Proc. Lond. math. Soc.,XLII, 230–265; 1937XLIII, 544–546.Google Scholar
  45. Widrow, B. and M. E. Hoff. 1960. Adaptive switching circuits. WESCON convention record, IV, pp. 96–104.Google Scholar
  46. Willshaw, D. J., O. P. Buneman and H. C. Longuet-Higgins. 1969. Non-holographic associative memory.Nature, Lond. 222, 960–962.CrossRefGoogle Scholar
  47. Willshaw, D. J. and Ch. v.d. Malsburg. 1976. How patterned neural connections can be set up by self-organization.Proc. R. Soc. Lond. B194, 431–445; 1979. A marker induction mechanism for the establishment of ordered neural mappings: its application to the retinotectal problem.Phil. Trans. R. Soc. Lond. B287, 203–243.CrossRefGoogle Scholar
  48. Wilson, H. R. and J. D. Cowan. 1972. Excitatory and Inhibitory interactions in localized populations of model neurons.Biophys. J. 12, 1–24; 1973. A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue.Kybernetik 13, 55–80.CrossRefGoogle Scholar
  49. Winograd, S. and J. D. Cowan. 1963.Reliable Computation in the Presence of Noise. Cambridge, MA: MIT Press.MATHGoogle Scholar

Copyright information

© Society for Mathematical Biology 1990

Authors and Affiliations

  • Jack D. Cowan
    • 1
  1. 1.Mathematic Department and Brain Research InstituteThe University of ChicagoChicagoUSA

Personalised recommendations