Skip to main content
Log in

Mathematical principles in afferent visual neurons: Differentiation, integration and transient proportionality related to receptive fields and shift-effect

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

The dual reciprocal and antagonistic organization of B- and D-neurons of the afferent visual system is obtained using differentiation and integration as mathematical equivalents of visual information processing by an impulse frequency code. The spatial and temporal derivatives lead to the transient responses. A constant and a time-dependent term proportional to the luminance distribution describe the sustained response components and the shift-effect of retinal on- and off-center ganglion cells. Receptive field properties of lateral geniculate cells and their antagonistic shift-effect are obtained by passing the retinal output, i.e. the difference between B- and D-neurons' activity, once again through the same operations. However, the factor of proportionality is applied to the retina alone. The surprisingly small difference between retinal and geniculate receptive field properties on the one hand and the dramatic change from a synergistic to an antagonistic shift-effect on the other hand are thereby explained. The theory offers an understanding of a a possible functional significance of the shift-effect as a mechanism of transientrestoration of visual information, which prevents the system from total fading by means of shifts of the retinal image, normally produced by eye movements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Barlow, H. B., R. Fitzhugh, W. W. Kuffler. 1957. “Change of organization in the receptive fields of the cat's retina during dark adaptation.”J. Physiol. 137, 338–354.

    Google Scholar 

  • Cleland, B. G., M. W. Dubin, W. R. Levick. 1971. “Sustained and transient neurones in the cat's retina and lateral geniculate nucleus.”J. Physiol..217, 473–496.

    Google Scholar 

  • Enroth-Cugell, C. and J. G. Robson. 1966. “The contrast sensitivity of retinal ganglion cells of the cat.”J. Physiol.,187, 517–552.

    Google Scholar 

  • Fischer, B. and H. U. May. 1970. “Invarianzen in der Katzenretina: Gesetzmäßige Beziehungen zwischen Empfindlichkeit, Große und Lage rezeptiver Felder von Ganglienzellen.”Expl. Brain Res.,12, 448–464.

    Google Scholar 

  • — 1973a. “Overlap of Receptive Field Center and Representation of the Visual Field in the Cat's Optic Tract.”Vision Res.,13, 2113–2120.

    Article  Google Scholar 

  • — 1973b. “A Neuron Field Theory: Mathematical Approaches to the Problem of Large Numbers of Interacting Nerve Cells.”Bull. Math. Biol.,35, 345–357.

    MATH  Google Scholar 

  • — and J. Krüger. 1974. “The Shift-Effect in the Cat's Lateral Geniculate Neurons.”Expl. Brain Res.,21, 225–227.

    Google Scholar 

  • —,— and W. Droll. 1975. “Quantitative Aspects of the Shift-Effect in Cat Retinal Ganglion Cells.“Brain Res.,83, 391–403.

    Article  Google Scholar 

  • Hammond, P. 1973. “Contrasts in spatial organization of receptive fields at geniculate and retinal levels: centre surround and outer surround.”J. Physiol.,228, 115–138.

    Google Scholar 

  • Holst, E. von and H. Mittelstaedt. 1950. “Das Reafferenzprinzip (Wechselwirkung Zwischen Zentralnervensystem und Peripherie).”Naturwissenschaften,37, 464–476.

    Article  Google Scholar 

  • Jung, R. 1961. “Korrelationen von Neuronentätigkeit und Sehen.” In: Jung, R., Kornhuber, H. H. (Hrsg.): Neurophysiologie und Psychophysik des visuellen Systems, 410–435. Berlin-Heidelberg-New York: Springer.

    Google Scholar 

  • — 1973. “Visual Perception and Neurophysiology.” In Jung, R. (Hrsg.) Handbook of Sensory Physiology, S. 1–152. Berlin-Heidelberg-New York: Springer.

    Google Scholar 

  • Krüger, J. and B. Fischer. 1973. “Strong Periphery Effect in Cat Retinal Ganglion Cells. Excitatory Responses in On- and Off-Center Neurones to Single Grid Displacements.”Expl. Brain Res.,18, 316–318.

    Google Scholar 

  • — and — 1973a. “Dependence of Surround Effects on Receptive Field Center Illumination in Cat Retinal Ganglion Cells.”Expl. Brain Res.,18, 287–303.

    Google Scholar 

  • — and — 1975. “Symmetry between the visual B-and D-systems and equivalence of center and surround: studies of light increment and decrement in retinal and geniculate neurons of the cat.”Kybernetik,20, 223–236.

    Google Scholar 

  • —,— and R. Barth. 1975. “The shift-effect in retinal ganglion cells of the rhesus monkey.”Expl. Brain Res.,23, 443–446.

    Google Scholar 

  • Kuffler, S. W. 1953. “Discharge patterns and functional organization of mammalian retina.”J. Neurophysiol.,16, 37–68.

    Google Scholar 

  • Latour, P. L. 1962. “Visual thresholds during eye movements.”Vision Res.,2, 261–262.

    Article  Google Scholar 

  • Maffei, L. and A. Fiorentini. 1972. “Retina-Geniculate Convergence and analysis of contrast.”J. Neurophysiol.,35, 65–72.

    Google Scholar 

  • Marko, H. 1969. “Die Systemtheorie der homogenen Schichten, I. Mathematische Grundlagen.”Kybernetik,5, 221–240.

    Article  MATH  Google Scholar 

  • Marr, D. 1974. “The computation of lightness by the primate retina.”Vision Res.,14, 1377–1388.

    Article  Google Scholar 

  • McIlwain, J. T. 1964. “Receptive fields of optic tract axons and lateral geniculate cells: peripheral extent and barbiturate sensitivity.”J. Neurophysiol.,27, 1154–1173.

    Google Scholar 

  • Moors, J., A. M. L. Coenen, H. F. M. Gerrits and A. F. H. van Vendrik. 1974. “The filling-in phenomenon in vision and McIlwain's periphery effect.”Expl. Brain Res.,19, 343–350.

    Google Scholar 

  • Ratliff, F. 1965. “Mach bands: Quantitative studies on neural networks in the retina.” Holden-Day: San Francisco.

    Google Scholar 

  • Riggs, L. A., F. Ratliff, F. C. Cornsweet and T. N. Cornsweet. 1953. “The disappearance of steadily fixated visual test objects.”J. Opt. Soc. Amer.,43, 495–501.

    Article  Google Scholar 

  • — and P. Whittle. 1967. “Human occipital and retinal potentials evoked by subjectively faded visual stimuli.”Vision Res.,7, 441–451.

    Article  Google Scholar 

  • Rodieck, R. W. 1965. “Quantitative analysis of cat retinal ganglion cells response to visual stimuli.”Vision Res.,5, 583–601.

    Article  Google Scholar 

  • Seelen, W. V. 1970. “Zur Informationsverarbeitung im visuellen System der Wirbeltiere, I.”Kybernetik,7, 43–60.

    Article  Google Scholar 

  • Singer, W. and O. Creutzfeldt. 1970. “Reciprocal laternal inhibition of on- and off-center neurones in the lateral eniculate body of the cat.”Expl. Brain Res.,10, 311–330.

    Google Scholar 

  • —, E. Pöppel and O. Creutzfeldt. 1972. “Inhibitory interaction in the cat's lateral geniculate nucleus.”Expl. Brain Res.,14, 210–226.

    Google Scholar 

  • Stone, J. 1965. “Quantitative analysis of the distribution of ganglion cells in the cat's retina.”J. Comp. Neurol.,124, 337–352.

    Article  Google Scholar 

  • Szentágothai, J., J. Hámori and T. Tömböl. 1966. “Degeneration and electron microscope analysis of the synaptic glomeruli in the lateral geniculate body.”Expl. Brain Res.,2, 283–301.

    Google Scholar 

  • Tate, C. and M. M. Woolfson. 1971. “On modelling neural networks in the retina.”Vision Res.,11, 617–633.

    Article  Google Scholar 

  • Wiesel, T. N. 1960. “Receptive Fields of Ganglion Cells in the Cat's Retina.”J. Physiol.,153, 583–594.

    Google Scholar 

  • Winters, R. W. and D. I. Hamasaki. 1972. “Comparison of LGN and optic tract intensity-response functions.”Vision Res.,12, 589–608.

    Article  Google Scholar 

  • Yasuda, M. 1971. “A dynamic model of the vertebrate retina.”Kybernetik,9, 26–30.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fischer, B., Krüger, J. Mathematical principles in afferent visual neurons: Differentiation, integration and transient proportionality related to receptive fields and shift-effect. Bltn Mathcal Biology 38, 253–267 (1976). https://doi.org/10.1007/BF02459558

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02459558

Keywords

Navigation