Skip to main content
Log in

On the pressure and flow-rate distributions in tree-like and arterial-venous networks

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

A solution algorithm yielding the pressure and flow-rate distributions for steady flow in an arbitrary, tree-like network is provided. Given the tree topology, the conductance of each segment and the pressure distribution at the boundary nodes, the solution is obtained from a simple recursion based on perfect Gauss elimination. An iterative solution method using this algorithm is suggested to solve for the pressure and flow-rate distributions in an arbitrary diverging-converging (arterial-venous) network consisting of two tree-like networks which are connected to each other at the capillary nodes. A number of special solutions for tree-like networks are obtained for which the general algorithm is either simplified or can be replaced by closed form solutions of the pressure and flow-rate distributions. These special solutions can also be obtained for each tree of diverging-converging networks having particular topologies and conductance distributions. Sample numerical results are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bassingthwaighte, J. B. and J. H. G. M. Van Beek. 1988. Lightning and the heart: fractal behavior in cardiac function.Proc. IEEE 76, 693–699.

    Article  Google Scholar 

  • Bassingthwaighte, J. B., R. B. King and S. A. Roger. 1989. Fractal nature of regional myocardial blood flow heterogeneity.Circ. Res. 65, 578–590.

    Google Scholar 

  • Cohn, D. L. 1954. Optimal systems: I. The vascular system.Bull. Math. Biophys. 16, 59–74.

    Google Scholar 

  • Cohn, D. L. 1955. Optimal systems: II. The vascular system.Bull. Math. Biophys. 17, 219–227.

    Google Scholar 

  • Dawant, B., M. Levin and A. S. Popel. 1986. Effect of dispersion of vessel diameters and lengths in stochastic networks: I. Modeling of microcirculatory flow.Microvasc. Res. 31, 203–222.

    Article  Google Scholar 

  • Fenton, B. M. and B. W. Zweifach. 1981. Microcirculatory model relating geometrical variation to changes in pressure and flow rate.Ann. Biomed. Engng. 9, 303–321.

    Article  Google Scholar 

  • Fung, Y. C. 1984.Biodynamics: Circulation. Berlin: Springer-Verlag.

    Google Scholar 

  • Fung, Y. C. 1991. Dynamics of blood flow and pressure-flow relationship. InThe Lung: Scientific Foundation. R. G. Crystal et al. (Eds). New York: Raven Press.

    Google Scholar 

  • Gan, R., Z. Y. Tian, R. T. Yen and G. S. Kassab. 1993. Morphometry of the dog pulmonary venous tree.J. Appl. Physiol. 75, 432–440.

    Google Scholar 

  • Glenny, R. W. and H. T. Robertson. 1991. Fractal modeling of pulmonary blood flow heterogeneity.J. Appl. Physiol. 70, 1024–1030.

    Google Scholar 

  • Horsfield, K. 1990. Diameters, generations, and orders of branches in the bronchial tree.J. Appl. Physiol. 68, 457–461.

    Google Scholar 

  • Horsfield, K. 1991. Pulmonary airways and blood vessels considered as confluent trees. InThe Lung: Scientific Foundation. R. G. Crystal et al. (Eds). New York: Raven Press.

    Google Scholar 

  • Horton, R. E. 1945. Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology.Bull. Geol. Soc. Am. 56, 275–370.

    Google Scholar 

  • Hydon, P. E. 1993. How to solve linear equations in branching networks. Unpublished.

  • Jiang, Z. L., G. S. Kassab and Y. C. Fung. 1994. Diameter-defined Strahler system and connectivity matrix of the pulmonary arterial tree.J. Appl. Physiol. 76, 882–892.

    Google Scholar 

  • Kassab, G. S., C. A. Rider, N. J. Tang and Y.-C. B. Fung, 1993. Morphometry of pig coronary arterial trees.Am. J. Physiol. 265, H350-H365.

    Google Scholar 

  • Liao, K. H. and A. E. Scheidegger. 1968. A computer model for some branching-type phenomena in hydrology.Bull. Inf. Assoc. Int. Hydrol. Sci. 13, 5–13.

    Google Scholar 

  • Lipowsky, H. H. and B. W. Zweifach. 1974. Network analysis of microcirculation of cat mesentery.Microvasc. Res. 7, 73–83.

    Article  Google Scholar 

  • Lipowsky, H. H. 1986. Network hemodynamics and the shear rate dependency of blood viscosity. InMicrovascular Networks: Experimental and Theoretical Studies. A. S. Popel and P. C. Johnson (Eds), pp. 182–196. Basel: Karger.

    Google Scholar 

  • Mayer, S. 1994. On the pressure and flow-rate distributions in networks. Ph.D. thesis, University of California, San Diego.

    Google Scholar 

  • Mayrovitz, H. N., M. P. Wiedeman and A. Noordergraaf. 1975. Microvascular hemodynamic variations accompanying microvessel dimensional changes.Microvas. Res. 10, 322–339.

    Article  Google Scholar 

  • Murray, C. D. 1926. The physiological principle of minimum work. I. The vascular system and the cost of blood volume.Proc. Nat. Acad. Sci. USA 12, 207–214.

    Article  Google Scholar 

  • Parter, S. 1961. The use of linear graphs in Gauss elimination.SIAM Rev. 3, 119–130.

    Article  MATH  MathSciNet  Google Scholar 

  • Popel, A. S. 1980. A model of pressure and flow distribution in branching networks.J. Appl. Mech., Trans. ASME 47, 247–253.

    Article  Google Scholar 

  • Popel, A. S. 1987. Network models of peripheral circulation. InHandbook of Bioengineering. R. Skalak and S. Chien (Eds), pp. 20.1–20.24. New York: McGraw-Hill.

    Google Scholar 

  • Singhal, S., R. Henderson, K. Horsfield, K. Harding and G. Cumming. 1973. Morphometry of the human pulmonary arterial tree.Circ. Res. 33, 190–197.

    Google Scholar 

  • Strahler, A. N. 1957. Quantitative analysis of watershed geomorphology.Trans. Am. Geophys. U. 38, 913–920.

    Google Scholar 

  • Sud, V. K. and G. S. Sekhon. 1990. Steady flow of a viscous fluid through a network of tubes with applications to the human arterial system.J. Biomech. 23, 513–527.

    Article  Google Scholar 

  • Weibel, E. R. 1991. Design of airways and blood vessels considered as branching trees. InThe Lung: Scientific Foundation R. G. Crystal et al. (Eds). New York: Raven Press.

    Google Scholar 

  • Woldenberg, M. J. 1986. Quantitative analysis of biological and fluvial networks. InMicrovascular Networks: Experimental and Theoretical Studies. A. S. Popel and P. C. Johnson (Eds), pp. 12–26. Basel: Karger.

    Google Scholar 

  • Yen, R. T., F. Y. Zhuang, Y. C. Fung, H. H. Ho, H. Tremer and S. S. Sorbin. 1983. Morphometry of cat pulmonary venous tree.J. Appl. Physiol. 55, 236–242.

    Google Scholar 

  • Yen, R. T., F. Y. Zhuang, Y. C. Fung, H. H. Ho, H. Tremer and S. S. Sobin. 1984. Morphometry of cat's pulmonary arterial tree.J. Biomech. Engng. 106, 131–136.

    Article  Google Scholar 

  • Zhuang, F. Y., Y. C. Fung and R. T. Yen. 1983. Analysis of blood flow in cat's lung with detailed anatomical and elasticity data.J. Appl. Physiol. 55, 1341–1348.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mayer, S. On the pressure and flow-rate distributions in tree-like and arterial-venous networks. Bltn Mathcal Biology 58, 753–785 (1996). https://doi.org/10.1007/BF02459481

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02459481

Keywords

Navigation